
www.manaraa.com

Pair Formation in CS1: Self-Selection vs Random Pairing

by
Aurelia T. Williams, B.S., M.S.

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

at

Pace University

School of Computer Science & Information Systems

June 6, 2007

www.manaraa.com

UMI Number: 3281992

3281992
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

ii

Dissertation Signature Page

We hereby certify that this dissertation, submitted by Aurelia T. Williams, satisfies the
dissertation requirements for the degree of Doctor of Professional Studies and has been
approved.

__ - ___________
Joseph Bergin Date
Chairperson of Dissertation Committee

__ - ____________
Fred Grossman Date
Dissertation Committee Member

__ - ____________
Frances Gustavson Date
Dissertation Committee Member

School of Computer Science and Information Systems
Pace University 2006

www.manaraa.com

iii

An Abstract
Pair Formation in CS1: Self-Selection vs Random Pairing

by
Aurelia T. Williams

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

at

School of Computer Science and Information Systems

Pace University

September 2006

Attrition in Computer Science education is at its highest level in the last 20 years.
Many researchers are searching for practices to decrease the attrition rate nationwide.
Pair programming has been borrowed from industry and placed in today’s computer
science academic environment. Many studies have shown that pair programming
increases students’ confidence levels and aids in the retention of those students that
have selected computer science as their academic major.

This research builds on this premise and investigates the effects of self-selection and
random methods of pair formation. These methods of pair formation were used in
beginning computer science courses at a historically black college and university
(HBCU) to statistically demonstrate that students prefer to self-select their partner.
Honoring this preference aids in the students overall satisfaction with beginning CS
courses therefore decreasing the students possibility of changing their academic major.
Data will show that in a CS1 course, the election to implement random or self-selection
pair formation is trivial and students will perform equally whether the pairs are
assigned or self-selected, however self-selection aids in the satisfaction of a student and
therefore impacts their decision to retain computer science as their major.

www.manaraa.com

iv

Acknowledgements

Embarking upon the road to obtain a terminal degree was a major undertaking for me –
a wife and mother of 2 very young children. However this goal was pressed upon me
by a wonderful mentor and encouraged and supported by many family members and
friends who told me that the goal was indeed obtainable in many moments when even I
didn’t believe in myself. Each of these persons deserves their own page of thanks but
space is limited so I will do my best in just a paragraph or two.

To my husband, Aurthor C. Williams, Jr., thanks for all of your patience and
understanding during my 3 year journey. I know there were many days when I just
couldn’t be satisfied and all of my frustration was directed toward you – my closest
friend. We shared high moments and very low moments during this tenure and I
sincerely that you for not taking me up on some of my offers. My love for you is
endless!

To my son, Azad, thanks for understanding when Mom couldn’t read your book
because she needed to read her own and for responding when Mom would say “can you
just watch TV for a little while”. To my son, Atrell, you don’t even know how much
you gave up at 7mos so that Mom could pursue her degree but I do and will never
forget. To my daughter (via the EASY button), Jhanae, you probably noticed the largest
difference. Thank you for adjusting into the role of the more responsible big sister. All
of you make my heart sing.

To my parents, Lewis & Constance Taylor, what can I say? Your support and
encouragement are indescribable. That you for the many prayers sent on my behalf.
Thank you for the many sleepovers with the kids just so that I could finish one last
thing – although it never seemed to be the last. Thanks for the nagging and constant
reminders to make me get things done even when I didn’t want to hear it. Thanks for
words of encouragement when I could no longer see the light at the end of the tunnel.
Had it not been for the two of you, I am sure this degree would not have been possible.
Thank you! Thank you! Thank you!

To my Aunt Beverly, thanks for coordinating the kids’ schedules with my parents via
email. Often it resulted in you taking the kids out to dinner whenever I just needed a
moment to gather my thoughts. Your support of my journey is greatly appreciated.

To my Aunt Linda, thanks for the many prayers via the telephone when I was on my
way to work and felt completely overwhelmed. You are forever loved and appreciated.

Moving to my work family, first I would like to thank my mentor, advisor, Dean, and
friend, Dr. Sandra J. DeLoatch, as a mentor you encouraged me to pursue a terminal
degree as it is required to have a career in academia at a time in my life when returning
to school was farthest from my mind. As an advisor, you have seen many things that I
have not seen in myself and you have shared your stories in an effort to encourage me
to pursue my dreams. As my Dean, you provided financial support for classes and

www.manaraa.com

v

travel to NewYork as well as release time at NSU so that I could have more time to
study. As a friend, you have encouraged me to pursue even bigger dreams – some I am
beginning to picture as well. For all that you have done and continue to do, I am
eternally grateful.

To my buddy Marvin, you always have an ear for me to bend. You let me vent, gripe,
and complain and then you tell me to get over it and do what I need to do. Thank you
for your kind words of encouragement and having the courage to tell me when I am
wrong. I really appreciate your friendship and your role as the big brother that I never
had.

Thanks to my departmental chair, George Harrison, for scheduling my classes to teach
on Tuesday and Thursday only to give me daylight hours to work on my assignments.
Thanks to my colleagues, Jonathan, Cheryl, George and Nora for allowing me to
conduct my research in your classes and for administering the plan as written. Thanks
to my teaching assistants, Nikki, Michael, TJ, Wynton, Pam and Tom for grading the
programming assignments and administering and collecting the surveys. Your
participation was invaluable. Thank you, Yvette and Wallace, for your assistance in the
creation of the online survey website.

Thanks to my Pace advisors, Joe and Fred, for your patience and incredible insight into
the doctoral process. Both of you are extremely intelligent men with fluency in many
topics. Joe, I especially appreciate all of the words you shared to keep me motivated
and the words that you didn’t when I procrastinated. You two are a wonderful good
cop – bad cop team. To my statistical advisor, Dr. James Nolan, thanks for
demystifying the world of research statistics at a time when my ignorance sent me to
the ER for my one and only anxiety attack. Many thanks to Dr. Laurie Williams for the
development of a process in which I was able to extend in research.

To my group 2 members, Ted and Dick, thanks for your assistance and participation in
team assignments. A special thanks for agreeing to begin telephone group meetings at 9
pm which allowed me to get my kids into the bed to minimize distractions. To Mary, a
special group 2 member, I really appreciate all of our conversations about any and
everything – those that were grounding and encouraging and those that provided an
“in” to the class of 2006 as a whole. Thanks for the rides to and from LaGuardia
Airport and most importantly thanks for inviting me and my entire family over on
graduation eve for dinner and entertainment. The girls on the violin were outstanding!

Overall, I must express that the experience I have gained, the things that I have learned,
and the memories I have shared are PRICELESS. If it had not been for all of you and
what you do and have done then I would not be the person that I am. Thanks to you
all!

Dr. Aurelia Taylor Williams
(doesn’t that sound AWESOME)

www.manaraa.com

vi

TABLE OF CONTENTS

ABSTRACT.. III

LIST OF TABLES AND CHARTS..VIII

1.0 INTRODUCTION ... 1

2.0 BACKGROUND AND RELATED WORK..4

2.1 UNIVERSITY SETTING (BACKGROUND AND RESEARCH MOTIVATION) 4
2.2 EXTREME PROGRAMMING ... 7
2.3 PAIR PROGRAMMING..9
2.4 PAIR ROTATION.. 18
2.5 PEER EVALUATION ... 23
2.6 PAIR FORMATION ... 30
2.7 PAIR PROGRAMMING IN LABORATORIES... 34

3.0 METHODOLOGY .. 37

3.1 SAMPLE ... 40
3.2 INSTRUMENTATION... 40
3.3 PROCEDURE .. 42
3.4 HYPOTHESES .. 47
3.5 DATA ANALYSIS.. 50

4.0 OBSERVATIONS.. 52

4.1 PILOT STUDY .. 52
4.2 OFFICIAL EXPERIMENT .. 57
4.2.1 SAMPLE .. 58
4.3 ACHIEVEMENT ..59
4.4 RESULTS ... 61
4.5 HYPOTHESES ANALYSIS ... 62

5.0 CONCLUSIONS.. 85

5.1 FUTURE WORK ...88

APPENDICES ...90

APPENDIX A: SPRING 2006 EXECUTION PLAN.. 90
APPENDIX B: PEER EVALUATION FORM (FALL 05) .. 91
APPENDIX C: ONLINE PEER EVALUATION FORM ... 92

www.manaraa.com

vii

APPENDIX D: DEMOGRAPHIC DATA SHEET.. 94

ACRONYMS AND GLOSSARY.. 95

REFERENCES.. 96

www.manaraa.com

viii

LIST OF TABLES AND CHARTS

Table 1: Questions used to Evaluate Partner44
Table 2: Students' SAT-M and GPA Information..47
Table 3: Response Distribution for Fall 2005..54
Table 4: Achievement Factors by Semester..60
Table 5: Response Distribution for Spring 2006 ...61
Table 6 : Positive Student Responses to Q14 ..66
Table 7: Performance on Exam Scores by Pair Formation Method...68
Table 8: Group Statistics by Gender.. ..69
Table 9: Independent Samples Test by Gender ...70
Table 10: One-way Analysis of Variance by Gender ..71
Table 11: Analysis of Variance by Pre-Registration72
Table 12: Group Statistics by Pre-registration...73
Table 13: Independent Samples Test by Pre-registration74
Table 14: Analysis of Variance by Major..75
Table 15: Analysis of Covariance..76
Table 16: Fall 2004 CS Majors Retention Data...79
Table 17: Fall 2005 CS Major Retention Data ..80
Table 18: Spring 2006 CS Major Retention Data81

Chart 1 : Mean Self-selection Ratings to Q663
Chart 2 : Mean Randomly Assigned Ratings to Q6...63
Chart 3: Self-Selection Mean Rating to Q764
Chart 4: Random Mean Rating to Q764
Chart 5: Mean Ratings by Question (All Courses)66
Chart 6: CS Majors Retained After One Semester82
Chart 7: CS Majors Retained After One Year ...83
Chart 8: Comparison of Student Success based on Lab Enrollment..86

www.manaraa.com

1

1

Chapter 1

1.0 Introduction

Pair programming is a software development practice in which two programmers

work together at one computer, side by side collaborating on the same algorithm,

code, or test [68]. One of the pair is identified as the “driver”, who has control of

the keyboard and actively types at the computer and the other is identified as the

navigator, who constantly watches the work of the driver and identifies defects,

thinks of alternatives, and asks questions. The two are constantly working as

partners to develop code. In industry, pair programming has been used sporadically

for decades. [70] Only in recent years, computer science educators have begun

encouraging the use of pair programming in the classroom, mainly due to the fact of

evidence from industry stating the major benefits of the practice. Prior to this time,

such collaboration was considered cheating; educators were concerned about

allowing pair programming because the approach had the potential for only one of

the pair to learn while the other would passively allow their partner to complete the

work. However, research has shown that pair programming in the computer science

classroom is generally valuable [70] and the benefits associated with the student

learning far outweigh the concern of whether pair programming is considered

“authorized” cheating.

www.manaraa.com

2

2

In the classroom environment, pairing students has many benefits. In industry,

software developers generally spend 30% of their time working alone, 50% of their

time working with one other person, and 20% of their time working with two or

more people. [40] Pairing is one cooperative and collaborative pedagogy that

introduces the students to the collaboration required of a student’s future

professional life [40]. Other benefits shown include more students passing the

course, higher quality programs, less time to complete programming projects,

increased student satisfaction, increased numbers of students continuing with a

computer related major, and possibly better exam scores (when drop rates are

factored in)[32]. Pairing a student with one partner for the entire semester is

beneficial for both students and educators, but may not be optimal.[70] Some

students may be concerned with the skill level and work ethic of their partner. Pair

rotation may be a more viable solution. Pair rotation is defined as when students

pair with different classmates throughout the semester. With each partner, each

student assumes both the role of driver and navigator for varying periods of time in

each programming session [70].

Pair programming also introduces other aspects that must be addressed when used

in the academic environment. Peer evaluation and pair formation are two major

concepts that affect the implementation of the pair programming pedagogy. Pair

formation is defined as the method in which pairs are formed. Research has been

performed that investigates various methods of pair formation and documented

which methods work best at a students’ level of proficiency in computer science

[40]. Peer evaluation is defined as the mechanism used by students to evaluate

www.manaraa.com

3

3

their partner during a pair programming activity to maintain individual

accountability. Pair evaluation has been used by many researchers in various forms

and at many levels of the students’ academic career. Peer evaluation’s main goal is

to give the students a voice in the assessment of their partner’s performance.

This thesis combines the major aspects related to pair programming (pair formation,

pair rotation, and peer evaluation) in the academic environment and reports on the

practices used to facilitate students enrolled in CS1 courses at an HBCU.

This thesis is organized as follows: Chapter One gives an introduction to the

research; Chapter Two provides the research motivation, background, definition,

and related research activities for pair programming, pair rotation, pair formation,

and pair evaluation; Chapter Three provides the methodology in which all aspects

were used to provide quantitative data used for measurement; Chapter Four

provides the observation, results and analysis of the data measured to suggest

methods of pair formation that should be employed in CS1 courses when student

satisfaction, retention of students, and maintaining individual academic

performance are the main goals.

www.manaraa.com

4

4

Chapter 2

2.0 Background and Related Work

2.1 University Setting (Background and Research Motivation)

Norfolk State University (NSU) is one of the largest predominately black institutions in

the nation. “It is committed to pursuing its vital role of serving the people of the

Hampton Roads area. NSU is a public, urban, comprehensive University offering

programs at the undergraduate and graduate levels. NSU emphasizes teaching over

research, and is classified as a Carnegie Mellon Foundation Master’s/L: Master’s

College and University”[1]. Founded in 1935, NSU adheres to the “traditional purpose

of the Historically Black College and University (HBCU) and espouses the tradition of

service to its students, its alumni, the academy, the Commonwealth of VA, the nation

and the world. NSU’s primary mission is to provide an affordable high quality

education for an ethnically and culturally diverse student population, equipping them

with the capability to become productive citizens who continuously contribute to a

global and rapidly changing society”[57].

As of fall 2005, NSU’s total student population was reported at 6,096 students[44]. Of

these students, 78% are full-time students, 87% are undergraduates, 64% are female,

86% are African-American and only 34% are residential. The mean (average) student

age is 25. These numbers are especially significant to understand the student body that

www.manaraa.com

5

5

NSU serves. Its students are generally older, full-time, non-residential students with

full time jobs and other outside obligations such as families.

NSU is considered to be a liberal arts university with an emerging science and

technology powerhouse. The School of Science and Technology (SST) is second only

to the school of liberal arts. With its enrollment of 1720 students, 28% of the students

enrolled at NSU are science majors.

The SST consists of nine departments; Allied Health, Biology, Chemistry, Computer

Science, Engineering, Mathematics, Nursing, Physics, and Technology. It offers

undergraduate degrees in all departments as well as masters level graduate degrees in

electrical engineering, optical engineering, materials science, and computer science.

The school also has the most funded grants of any school at NSU. Faculty

contributions in research, grantsmanship, service, and mentoring are exceptional.

Graduates secure outside jobs and earn advanced degrees in record numbers[15].

The Computer Science (CS) department at NSU currently has 220 students declared as

a CS major. During the period from 1999-2004, the CS department has seen constant

attrition that mimics that of the national average. However, at NSU, this rate has grown

by double digits since 2001. The national attrition rate is especially high for computer

science majors as opposed to other majors due to the unrealistic career preview.

Traditionally students enrolled in computer science programs are educated and

evaluated individually. Students have also been trained to believe that the career of a

computer scientist does not include social aspects. Many factors have been considered

while trying to pinpoint the reason for the extremely high attrition rate. Among the

www.manaraa.com

6

6

highest is the satisfaction of CS freshmen majors at the conclusion of their first year of

studies. This transition shows the highest number of “drop-outs” many due to not really

knowing what computer science is before electing it as a major.

Curriculum changes have been implemented to address the freshman CS experience.

Those changes include the addition of programming laboratories and the inclusion of

the pair programming practice used for software development. This research will

investigate the feasibility of pair programming in a university setting in computer

science education at a Historically Black College and University (HBCU) and the

methods used to form a pair. Specifically, in this study pairs will be formed either by

random assignment or by self-selection where each partner directly self-selects with

whom they want to work.

This research has a great impact to the field of computer science education because all

documented studies to date that measure the efficacy of pair programming in an

academic environment have been completed at majority institutions. Another aspect

related to pair programming that has been studied is the retention of underrepresented

students (female and minorities) in the computer science discipline. It is important to

note that those studies investigated retaining minorities and females enrolled at

majority institutions, where the total number of those students rarely represented more

than 5% of the students enrolled in their departments. In the CS department at NSU,

virtually all, 98%, of the students fall into the category of underrepresented students.

www.manaraa.com

7

7

2.2 Extreme Programming

eXtreme Programming (XP) is a software development method that favors informal

and immediate communication over the detailed and specific work products required

by many traditional design methods[68]. XP was produced by Kent Beck and Ward

Cunningham over a fifteen year period with a team in mind[4]. Ron Jeffries defines

extreme programming as a discipline of software development based on values:

communication, simplicity, feedback, courage, and respect. It works by bringing the

whole team together in the presence of simple practices, with enough feedback to

enable the team to see where they are and to tune the practices to their unique

situation.[23] The practices are: the planning game, small releases, metaphor, simple

design, testing, refactoring, pair programming, collective ownership, continuous

integration, 40-hour week, on-site customer, and coding standards.[4] Beck and

Cunningham believe that teams should put more weight on individuals and interactions

over processes and tools and responding to change over following a plan. Pair

programming fits well within XP for reasons ranging from quality and productivity to

vocabulary development and cross training. XP relies on pair programming so heavily

that it insists all production code be written by pairs[68].

XP’s dozen practices are appropriate for small to midsize teams developing software

with vague or changing requirements. The methodology copes with change by

delivering software early and often and by absorbing feedback into the development

culture and ultimately into the code.[68] The XP approach credits much of its success

to the use of pair programming by all programmers, regardless of experience[68].

www.manaraa.com

8

8

Perhaps the best example of XP success has been the Chrysler Comprehensive

Compensation System first launched in May of 1997. During a period of five months of

system development, the only code defects that made it through testing procedures

were written by someone programming alone. There have even been claims of up to

1500 lines of code being written and run correctly the first time the program was

executed, when programmed in pairs [67]. Industry programmers who work in pairs

report higher job satisfaction than those who work alone (as many as 96% reported

enjoying their job more when working in pairs [68]). It has even been reported that

pairs can finish programming assignments in half the time as individuals [68]. The

evidence is clear, programmers who develop code in pairs write better code faster

than those who program alone.[10] For this reason, educators have begun to adopt

the practice of pair programming as a collaborative learning tool for educating

computer science (CS) majors and those students interested in working in the

information technology (IT) field.

www.manaraa.com

9

9

2.3 Pair Programming

Pair programming is defined as the practice of all production code being written with

two people looking at one machine, with one keyboard and one mouse[4]. There are

two roles in each pair. One of the pair, called the driver, types at the computer or

writes down a design. The other partner, called the navigator, has the task of

monitoring the driver’s work for tactical and strategic defects. Tactical defects are

local errors such as syntax errors, typos, or improper method calls. Strategic errors

involve, as the name implies, problems in strategy, leading incorrect or inefficient

solutions to programming problems. Because the navigator is not involved in the

highly focused work of typing the code, they can afford to look ahead and monitor

overall strategy. Still, the driver and navigator continuously spend time brainstorming

and negotiating their course of action[60].

Ideally, communication between the driver and navigator is regular with the driver

explaining what he or she is doing or asking for advice and/or confirmation of what

he or she has done and the navigator providing feedback. The feedback can be

pointing out simple errors, providing encouragement, or challenging the driver to

explain what was done. An effective programming pair has an active relationship with

both halves actively involved in the development of the code or design[4, 60]. Balance

in the partnership is preserved by having the two switch roles on a regular basis.

www.manaraa.com

10

10

Pair programming is not one person programming while another person watches. It is a

dialog between two people trying to simultaneously program, analyze, design, test, and

understand together how to program better.[4] Pairing is a dynamic process.

Pair programming profits from the fact that there is not one mind working but two.

Two minds develop ideas around the same set of problems, but from a different kind of

perspective[53]. It has many benefits and advantages. It has also been stated that if

people choose to program solo they are more likely to make mistakes, more likely to

overdesign, and more likely to dismiss the other practices of XP, particularly under

pressure.[4] In industry, if two people pair in the morning, then they should be paired

with another in the afternoon.[4]

Nosek ran an experiment [42] in which 15 full-time programmers were organized into

five solo programmers and five groups of pair programmers to write a script that

performed a database consistency check. Both solo and pair programmers were given

45 minutes to complete the task. Nosek measured the impact of pair programming on

five independent variables: time, readability, functionality, programmer confidence,

and enjoyment. Scores were better for pairs in all measures, but the differences in the

time and readability scores were not statistically significant. The combined score of

these four variables was about 35% better for pairs than for solo programmers. Nosek

notes but does not elaborate, that “the scripts produced by some of the pairs were

significantly better than the scripts they bought from expert consultants.”

Williams and Kessler point out seven behaviors that happen naturally when programming

in pairs [67] These behaviors make it possible for pair programmers to finish their tasks

www.manaraa.com

11

11

about twice as fast as solo programmers, with the use of approximately the same

overall resource expenditure, and still generate higher quality products. These seven

behaviors are:

1. Pair pressure: Williams and Kessler report that, in a junior-senior software

development course, most students worked harder when paired because they did

not want to let their partners down [65]. The students do not intentionally put

pressure on their partners. Nevertheless, each feels the push to move forward.

2. Pair negotiation: The two programmers work together to solve a problem. They

have different prior experiences but a common goal. The two have to negotiate to

share a common approach.

3. Pair courage: The programmers give each other the courage to do something they

might not do if working alone.

4. Pair learning: The programmers can learn from their partners’ continual critique

and review. Additionally, because the programmers work closely together, their

knowledge, including programming tips, design skills, tool usage, is transferred

between them constantly.

5. Pair trust: Pair programmers work in a collaborative fashion. They learn to trust

their partners to get the work done.

6. Pair review: When working in a pair, both programmers review their joint product

continuously. This review technique has been shown effective and enjoyable.

7. Pair debugging: Debugging is a tedious and laborious task. However, if we can

discuss the problem with someone, we might find new ideas and solutions.

2.3.1 Advantages of pair programming

www.manaraa.com

12

12

In industry, investigative studies [11] have shown that pair programming has inherent

benefits, including:

 Continuous Reviews. Pair programming’s shoulder-to-shoulder technique serves as

a continual design and code review, leading to more efficient defect removal rates

as compared to two solo programmers.

 Problem solving. Experienced pairs refer to the team's ability to solve

"impossible" problems faster.

 Learning. Pair programmers repeatedly cite how much they learn from each other

[4]

o Team Building and Communication. Pair programmers become

more familiar with each other, which serves to improve team

communication and effectiveness.

o Knowledge Management. Research shows that pair programming is

an effective Knowledge Management technique [45]. In the course of

pair programming, multiple programmers are exposed to each piece

of code, reducing the impact of losing staff. When a pair is split,

they both take domain and coding knowledge to other programmers

that they pair with in the future. The continual interaction between

pair programmers provides an environment that promotes

knowledge sharing, and collaborative knowledge discovery [45].

o Quality and Productivity. Studies have demonstrated through

anecdotal, qualitative and quantitative evidence that incorporating

pair programming into a software development process will help

www.manaraa.com

13

13

yield software products of better quality in less time with happier,

more confident programmers [27]. Developers are less likely to

produce defective code, because a teammate is watching them.

Developers are less likely to spend time on things other than work;

therefore productivity increases [11].

Cockburn and Williams conducted an anonymous survey of professional pair

programmers and student pair programmers to determine whether or not pair

programming was more enjoyable than individual programming[11]. The results of the

survey showed that more than 90% of those that practice pair programming enjoy their

work more because of it. These results were also confirmed in a study conducted by

Cliburn[10] at a small college where the vast majority of students are residential; he

reported that the majority of students liked working in pairs on the projects (76.9%). It

is also noted that the students who did not like pair programming performed well in the

course (typically receiving an “A” or “B” final grade). That result is also consistent

with [55] where the best students typically do not enjoy working in pairs since they

could probably solve the problem alone.

Pair programming has been used in the undergraduate computer science classroom with

more positive reports than negative reports[61, 64-66] Educators and students have

both expressed satisfaction and enjoyment using pair programming to teach and

understand computer science topics. Studies have identified the following advantages:

 Pair programming improves quality, teamwork and communication.[51]

Researchers observed that pair programming conducted with senior-level

www.manaraa.com

14

14

undergraduates led to a 15% reduction in total number of observed defects with

a 15% increase in total development time[62, 68]. It was also found that

students working in pairs were more satisfied, solved tougher problems, faster,

and had improved team communication and overall team effectiveness [32, 61,

68]. Pairs also spend less time working on assignments than individuals [8] and seem

to keep each other on task while they work.[10]. These results are consistent with

reports of pair programming used in industry.

 Pair programming improves retention and confidence [51]. Researchers

demonstrated that pair programming students were significantly more likely to

complete the course and achieve a grade of C or higher [33, 35, 40]. The

pairing students demonstrated higher confidence in their project work in

comparison to students who did not pair program [33, 35]. Additionally, the

students who paired were more likely to take the next programming course than

those who did not pair program[35, 40]

 Pair programming leads to improved comprehension and learning [51].

Students have reported that pair programming allowed them to understand the

project better and improve their learning and comprehension of unfamiliar

topics [51]. It also supported in studies via examinations scores that pair

programming students perform better on individual tests [40].

Educators have also identified the following advantages:

 Instructors feel more positive about the class. Students are happier, and hand in

assignments on time with higher quality. The students are more satisfied. [67]

www.manaraa.com

15

15

 Students are more self-sufficient. Students no longer look to the teaching staff as

their sole source of technical advice. In pairing, when one partner does not

know or understand something, the other almost always does.[67]

 Cheating is reduced. Collaboration is legitimized. Pair pressure causes the

students to start working on projects earlier and to budget their time more

wisely. Students have a peer to ask for help, therefore do not feel as

helpless.[67]

 Grading is significantly reduced. Two students submit one assignment and

typically share the same grade[67] therefore reducing the workload[72].

Advantages specific to students are as follows:

 Reduced frustration. Small typos or a missing semi-colon can host hours of

debugging time. Waiting, minutes, hours, or even a day to get help from a

teacher is alleviated because the pair may be to provide an answer

immediately.[67]

 Negative self-talk is reduced[67] Students have the conviction to ask for help.

If they realize that they don’t understand something and their partner doesn’t

understand it either, then it must hard. The students know that they are not the

only ones.

 Students get to know each other on a personal basis. Students will not feel like

a face in the crowd because they are ‘forced” to work with a peer[67]. Pair

rotation helps students get to know more of their peers.[67]

www.manaraa.com

16

16

One researcher found that most of the students thought having a partner was beneficial

to them (76.9%). Most students thought pair programming improved their grade

(61.5%), while 30.8% thought there was no change [10].

2.3.2 Disadvantages of pair programming:

Students report only a few negative aspects to pair programming. Pair programming

could lead to schedule issues, pair incompatibility, and unequal participation [8, 51].

Some students in a study opposed the pair programming practice due to pair

incompatibility, schedule-related issues between pairs (finding times they can meet

together to work on projects), and unequal participation by the individuals in a pair [8,

51].

Educators suggest a good solution to help students find times to meet is to have a lab

associated with the course that students can use to work on assignments in pairs [33,

72]. This gives them one or two hours per week that they are guaranteed to find time

to work together. For unreliable partners, a solution is to assign new pairs for each

project. Thus, students will not have to work with the same poor partner for more than

one assignment.

While pair programming is certainly not perfect for college courses, it seems to have

many advantages that make its implementation worthwhile. [10]

2.3.3 Concerns with pair programming:

Pair incompatibility could be a major cause for concern. Several studies have shown

that matching pairs based on skill level is beneficial for productivity [70]. Also,

students with a higher self-reported skill level report the least satisfaction when they

www.manaraa.com

17

17

pair program with students of lesser self-reported skill level [55]. In the Cliburn study,

one student, who said that pair programming lowered his grade mentioned, “it was

more of a hassle to teach my partners the code they didn’t understand. Thus I had less

time to focus on the projects.”[10] Researchers found that students produce their best

work when they are paired with a partner of equal perceived skill level [56].

Educators have tried many methods to address the pair compatibility concern. The

methods include pair formation, peer evaluation, and pair rotation; all will be addressed

independently in the next sections.

www.manaraa.com

18

18

2.4 Pair Rotation

In organizations where there is more than one pair, pairs often rotate partners after the

completion of a task or subtask. Pair rotation allows the programmers to learn different

areas of the system, and learn from the skills of different partners.[45]

The advantages of rotating the programmers are that they learn more about the whole

product by pairing with many team members, they team with the person who can help

them the most on a particular task, and communication and teamwork increases

significantly [49] Rotating pairs offers knowledge management benefits because there

are always at least two developers that know about a particular piece of code. Also, the

more people that have paired on a particular piece of code, the better the quality will be

and the easier it will be to discuss the code or to extend or change it [64].

In a course environment, pairing a student with one partner for the entire semester

is beneficial for both students and educators, but may not be optimal. From an

educational perspective, the term pair rotation [67] is used to denote when

students pair with different classmates throughout the semester. With each partner,

students assume both the roles of driver and navigator for varying periods of time

in each programming session. Pair rotation was used in the freshman (CS 1)

Introduction to Programming course at North Carolina State University (NCSU),

and in the advanced undergraduate software engineering (SE) course at North

Carolina State University (NCSU) during the Fall 2002 (SE) and Spring 2003 (CS

1) semesters.

www.manaraa.com

19

19

When two programmers are first paired, there is often a “jelling period” during which

time each is adjusting to the working habits of the other, learning the other’s strengths

and weaknesses, and learning how to communicate effectively. While productivity is

somewhat less during this period, it soon increases as the pair becomes comfortable

working together. Anecdotal evidence suggest that this adjustment period varies from a

few hours to several days, depending on the individuals.[62]

The idea of swapping partners has been used in computer science education.

Educators and researchers have different reasons for trading partners and have

documented students’ perceptions of the idea of partner trading. DeClue’s

rationale for performing this switch included simulating the real-world work

environment and investigating the possibility that switching partners might have a

generalized positive impact on the production of quality code[14]. Specifically, after

each of the three two-week phases, students were reassigned to new partners. The

duration of a phase lasted approximately two weeks. One student stayed with the

project he or she had been working on, while the second student was placed with a

completely unfamiliar code set. He believes from a pedagogical standpoint, the forced

trading of partners emphasized the practical importance of external design

documents, test plans, and writing code for readability and he found that none of the

students said they resented the fact that they had to switch partners.[14]

In another study when students were surveyed to identify whether they found pair

rotation to be advantageous by answering the following question: “Do you think it was

a good idea to change partners after each assignment?” [51] Research suggests that

www.manaraa.com

20

20

students who preferred pair rotation to those who did not are significantly greater than

2:1[51]. This perception was also identified in [10] where 76.9% of the students liked

working with different partners. They mentioned reasons such as, “It exposed me to

more people in my class” and “maybe a different partner knows a little more about a

certain area, and when paired with them you can gather more.” However, in informal

discussions with students, it was sensed that most would have preferred to work with

the same partner each time, if they liked the person, their schedules were compatible,

and the student was a hard worker. One student stated, “You’ll get to know him/her so

it’d be easier to work (with them). If the partner is bad, it’s good that one can have

another one.” The students who were not sure or thought it was bad to work with a

different partner each time seemed to concur with this statement and added, “it is bad

to work with different partners because it is hard to fit your schedule to theirs.” This

seems to be one of the most difficult issues about pair programming for students,

finding times outside of class for partners to meet[8, 10, 51].

2.4.1 Advantages of pair rotation

The benefits of pair rotation documented in industry have also been documented in

computer science education. Pair rotation provides students with exposure to more

classmates [51] The concept enabled the students to work with different classmates and

learn new ways to solve problems[10, 51] and helped students get to know more of

their peers.[67] Pair rotation also accommodates a student’s desire for a new partner

[51]. It has permitted students to switch partners for future projects if they were not

compatible with his/her current partner [51]. Since rotation is handled via regular

classroom management it is believed that this aids in the student’s overall experience

www.manaraa.com

21

21

with pair programming. In one study [10], the overwhelming majority of students

(84.6%) felt that their experience with pair programming would have been different if

they had programmed with the same partner on each assignment. Without pair rotation,

the instructor is presented with the problem of needing to break up another pair in order

to separate and reassign the students in dysfunctional pairs [51]

Pair rotation has been found to be beneficial to educators also. Educators benefit from

pair rotation by effectively dealing with dysfunctional pairs and inactive students via

peer evaluation[51]. When pair rotation is implemented with peer evaluation, educators

have multiple forms of feedback on an inactive student. This feedback conquers the

“one word against another’s” situation. Peer evaluation will be addressed in the next

section.

2.4.2 Disadvantages of pair rotation

Pair rotation, just like pair programming, has its documented disadvantages as well.

The main disadvantage that students have described is the need to re-adjust [51]. Pair

rotation could be inefficient, as it requires the students to re-adjust to a different partner

and his/her programming style at the beginning of every project [10, 51]. This

adjustment period is often referred to as the “jelling” period Another disadvantage is

the loss of a compatible partner [51]. If a student’s current partner is highly

compatible, pair rotation may lead to the loss of a perfectly good partner, and

introduces the risk of not having a good partner for the next project [51]. The

disadvantage to educators is the need to reassign pairs. Pair rotation requires teaching

staff to assign/create pairs using their method of pair formation at each cycle.

www.manaraa.com

22

22

Of more specific importance, however, is the role that changing partners had on the

code production. Changing partners, as might have been predicted, did not prove to

be a real difficulty for the students[14]. In DeClue’s study, the aspect of pair rotation

seemed to strengthen some of the more difficult lessons related to code readability,

using a coherent design, and using appropriate code documentation.[14]

www.manaraa.com

23

23

2.5 Peer Evaluation

When students work in pairs, the potential exists for one partner to do most or all of the

work, while the credit is assigned equally to both partners in the pair.[51] Educators

have implemented peer evaluation in classrooms where pair programming is used in the

practice of software development. Peer evaluation is the practice of one partner

evaluating the contribution of the other partner. Peer evaluation’s intent is to ensure that

both partners contribute equally to the product that is developed. The actual

implementation has been used in many ways, some educators have used the results

from the peer evaluation to influence the actual grade on the programming

assignment[51], others have just required the evaluation as a means to check on the

pair, and the actual evaluation score has no influence over the final score of the

programming assignment but may influence the final score in the class. Peer

evaluations have been collected in many ways as well. Some researchers have used

web-based forms[51], others have required a simple email depicting the contribution of

each of the pair[10], and one researcher actually used a quiz with specific questions

regarding the program to check on the student’s participation in the code

development[14].

Srikanth, et al[51], used a web-based peer evaluation tool, pair rotation, and required

students to assign 0 to 20 points on each of the following five questions, which gave the

partner a score of 0%–100% on their peer evaluation: Students understood that the

answers to the five questions on contribution could impact their grade. The students

www.manaraa.com

24

24

were asked to evaluate their perception of the partner’s skill level and their joint

compatibility on an ordinal scale:

1. Did the student read the lab assignment and preparatory materials before
coming to the scheduled lab?

2. Did the student do their fair share of work?

3. Did the student cooperatively follow the pair-programming model (rotating
roles of driver and navigator)?

4. Did the student make contributions to the completion of the lab assignment?

5. Did the student cooperate?

In Srikanth’s study, students in all classes were aware that their grades could be

significantly affected by their peer evaluation. However, peer evaluations were

handled differently in the beginning computer science (CS1) class than in the software

engineering (SE) class. In the CS1 class, the instructors examined the peer

evaluations at the completion of the semester. In SE, a student was approached by the

instructor as soon as he or she had two peer evaluation scores of 80% or less.

Depending upon the severity of the situation, the student was either given a warning or

his or her grade on the assignment was dropped. The grade was dropped to no lower

than the earned grade multiplied by the peer evaluation score. The partner of the

violating student’s score was then increased to (the earned score * (1 + (1-partner’s

peer evaluation score))) but not exceeding a value of 100.

Additionally in the study, the researchers queried the students on their perception of

the effectiveness of peer evaluation in providing feedback to teachers and in

motivating students to improve contribution. The majority of the students in both CS1

(63%) and SE (65%) agreed that peer evaluation was an effective means of feedback to

the teacher. However, a large number of students from CS1 (53%) believed that peer

www.manaraa.com

25

25

evaluation was not a good source of motivating students to contribute.[51]

Nonetheless, the researchers do believe there is a need to use peer evaluation in pair

programming to improve the productivity of all students, both strong and weak.

In Cliburn’s study [10], the researcher paired students with similar course grades. The

first project was fairly simple and he used the grade on that project and the first exam

as a basis for assigning partners in the future. Peer evaluations were added to the

course to comprise 10% of the student’s grade therefore reducing the influence of

homework and projects to compensate for the addition of peer evaluations. The

researcher now thought that students would be held accountable to each other, and if

one student does all the work on an assignment, the student would indicate that in a

peer evaluation and their partner would not receive the same score on the project. The

researcher knew that students typically do not like to evaluate each other, so the

evaluations were very short and confidential. After each assignment, students were

required to send an e-mail to the instructor stating what percentage each of them

contributed to the assignment. It is written that most e-mail evaluations looked

something like:

Bob 50%
Bill 50%

The researcher, Cliburn, told the students that “ideally they will report a 50/50 split on

the work yet their evaluation should not consider who typed what amount of code, but

how much each contributed to the final project.” [10]

www.manaraa.com

26

26

Cliburn also experienced similar results to Srikanth, et.al when surveying the CS1

students regarding peer evaluations. When asked “did peer evaluations make you feel

accountable to your partner,” for the most part (69.2%), students did feel that peer

evaluations made them accountable to their partner. The students mentioned things like

peer evaluations “encouraged you to put at least equal effort if not more” and “it

protected me from having a partner not do anything.” However, almost one third

(30.8%) did not feel the peer evaluations encouraged them to be accountable to their

partner. One student said “I wouldn’t give my partner a bad evaluation if they did

nothing.” Another student agreed saying, “Most of the time peer evaluations are

garbage. If I would not have ever seen my partner and did the whole thing myself I

would have still given them full credit.” Another surprising result the researcher found

was that students did not feel that meeting regularly with their partner was necessary

to earn a good peer evaluation. Students responded with statements like, “I feel I did

most of the work therefore it was not necessary to (attend) all the meetings.” Another

mentioned, “I met to get the work done. It really wasn’t for the evaluation.”[10]

Cliburn reports that “it seems that you cannot force the students to always give an

honest and objective evaluation, but at least the mechanism is there to protect the

students who want to be protected from a “parasite” (the term for students who do no

work, relying entirely on their partner to complete assignments) partner”. [10]

The researcher also concluded that since peer evaluations have been added and students

have been paired based on similar abilities, the quality of the students who finish the

course has seemed to improve and there has never been a student to complain that

www.manaraa.com

27

27

their partner was a “parasite.” However, retention is lower (23.5% dropped the course

during the first semester using peer evaluation).[10]

DeClue [14] used a peer evaluation similar to Cliburn for the first phase. DeClue

required one student to remain with the current project he or she had been working on

and the other student to be placed with a completely unfamiliar code set for the next

phase. He required each student to assess either him or herself with regard to

contribution to the pair in a particular phase. The question used was “Provide the

name of your partner and state in percentage terms how much of Phase <n> your

partner was responsible for. Give yourself a percentage as well. These two numbers

must add up to 100%.” For the last two phases, he also administered a quiz that could

only be successfully completed if the student had been highly involved with the

production of the code. Two example questions were “what is the name of the class

which contains your hash method?” and “what is the name of the text area object you

used in your program?” He concluded that pair programming does challenge the

assessor, however. When two students work as closely together as is called for by

generally accepted guidelines for pair programming, the code produced must be

credited to both students. Switching partners at the end of each phase helped defeat

the feeling that once you were assigned a partner you were "stuck" so to speak. The

quizzes at the end of phases two and three helped verify that each partner was

contributing to the effort of code production. In DeClue’s opinion, this aspect of pair

programming - difficulty in assessment - had less effect than might have been

anticipated.[14]

www.manaraa.com

28

28

The main advantage of peer evaluation is that it provides multiple forms of feedback.

When a student is paired with only one student for the entire semester, it can be

difficult to handle the situation in which one student is saying he or she did all the work

while the other insists that he or she has contributed. To overcome this situation,

instructors can apply pair rotation to get the input of several partners for each student

and confidently deal with an ineffective student [51]. Peer evaluation also allows help

with the handling of dysfunctional pairs. Since some researchers have included peer

evaluation, they have never had a student to complain that their partner did absolutely

none of the work.[10]

The greatest disadvantage of peer evaluation is the need for peer evaluation. When two

students work as closely together as is called for by generally accepted guidelines for

pair programming, the code produced must be credited to both students. Switching

partners at the end of each phase (or programming assignment) helped defeat the

feeling that once you were assigned a partner you were "stuck" so to speak[14]. Pair

rotation requires the teaching staff to consider the peer evaluation factor and its

resulting issues. When all students work alone, the grade determination process is

based on student contribution and is less complicated[51]. Also, there is a need to

monitor that one partner does not dominate the pair or that one partner is burdened with

the entire workload[40]. There must be some mechanism to ensure that students are

contributing fairly.

A major concern of peer evaluation is the reliability of student responses. Most

students do not want to evaluate their partners and many will not “turn in” their

www.manaraa.com

29

29

partner[40]. Students will often evaluate the performance of the pair with equal

distribution of effort even when the partner has contributed minimally[10]. One can not

force a student to give an honest and objective evaluation. Peer evaluation seems to

work better in upper-level (advanced) undergraduate courses than in CS1 courses. This

could be contributed to the maturity of the student but it has not been proven.

www.manaraa.com

30

2.6 Pair Formation

Pair formation has been discussed in many research studies however, there is no clear

method that accommodates all students. Some studies have suggested various ways to

pair studies but there is a distinction in which methods work best for students learning

to program (CS1) and advanced undergraduate students (3rd and 4th year students

mostly in the software engineering (SE) course). CS1 students are typically 1st year

freshmen students who have not had exposure to any program languages previous to

their enrollment in the course. However in some cases these students may have been

exposed to a software development methodology and high- level language in high

school via an advanced placement (AP) course. These students are the exception at

Norfolk State University (NSU) and are usually scholarship students so they are high

achievers and perform well in most academic environments.

Self-selection pairing is defined as the student choosing his or her partner in which to

pair. McDowell, et. al [33], allowed students to choose their own partners and remain

with the same partner for the entire semester unless unforeseen circumstances occurred

(scheduling problems, a student stopped showing up, etc.). This practice is also used

indirectly in many research studies in which the students identify who they do not want

to pair with [22, 51, 73]. It is then explained that the students are not assigned any

student on their “do not pair with” list.

Random pairing is defined as the instructor identifying and assigning all pairing groups

“ad hoc” that is without regard to factors that some research suggests increases pair

compatibility such as personality type, skill level, self esteem, and self-assessment [67].

www.manaraa.com

31

This practice was used in several studies including Nagappan, et. al [40], where a

software program was used to make random partner assignments with pair rotation for

each assignment. In a small percentage of cases, the random pairing led to

incompatible partners, which led to conflicts during working.

Studies have formed pairs based on self-assessment. Thomas, et al. [55], had students

rate themselves on a scale of 1 to 9 in terms of their programming ability and then

made partner assignment based on these ratings. In some projects, students who rated

themselves highly (7-9) were paired with students who rated themselves poorly (1-3).

In other projects, students were paired with those who rated themselves similarly.

Williams and Kessler have also formed pairs based on personalities (whether

someone is an extrovert or introvert) [67] in their research study using the Myers

Briggs Personality Type Indicator. The indicator is often used in studies to classify

people into one of the sixteen personality types based on the dimensions such as

introversion, intuition, feeling and judgment. While the indicator may be a factor in

determining productive pairs with professional programmers, it has been found that

students’ personality type and self-esteem are not critical for their compatibility.[25]

A particular study at Hanover College [10] in the CS1 level course tried a different

approach to form pairs by grouping students from different cultural or ethnic

backgrounds, thinking that it would be a good experience for college freshman to

work with people from places different than their home. The algorithm required

grouping students by priorities; first, by different cultural and ethnic background and

secondly, pairing upperclassmen with lowerclassmen students. This pairing scheme

www.manaraa.com

32

was used on programming assignments one, two, and three with pair rotation. This

study yielded surprising results, the individual exams showed that many of the students

that scored highly on the programming assignments seem to have no idea how to do

any programming on the exams.[10] Based on these results, the pairing scheme was

abandoned for one that paired students of similar attributes. The study suggests that

assigning partners so that students always work with someone at or near the same skill

level seems to be the best strategy for ensuring that students do not get though the

course only on the strengths of their partners[10] in the introductory course.

Another study conducted by Katira, et al.[26] aimed specifically at understanding

compatibility found that:

 Pairs are more compatible if students with different personality types are

grouped together in CS1

 Pairs are not more compatible if students with similar actual skill level are

grouped together in CS1.

 Pairs are more compatible if students with similar perceived skill level are

grouped together in CS1.

 Pairs are not more compatible if students with similar self-esteem are grouped

together in CS1.

These results are not the same for the advanced undergraduate student. The study

states the most significant result is that students prefer to pair with someone they

perceive to be of similar technical competence[26]. This was found to be true in

students learning to program as well as advanced undergraduate students. However,

www.manaraa.com

33

educators cannot predict this perception nor can pairs be formed based on this fact. The

data suggests that pair compatibility in beginning courses may increase if pairs are

formed by joining students of dissimilar personality type.[26]

This research uses a combination of all of the previous sections. Its focus investigates

if self-selection or random pair formation with pair rotation and peer evaluations leads

to increased satisfaction of the CS1 student enrolled at an HBCU.

www.manaraa.com

34

2.7 Pair Programming in Laboratories

The greatest concern of implementing pair programming into the CS curricula that

students have identified is the ability to coordinate schedules to find a time for both

partners to work together[8, 10, 51]. Researchers have suggested including a lab

associated with the class to assist with this problem[10, 33, 72]. This gives them one

or two hours per week that they are guaranteed to find time to work together.

Wiebe, et al[60], in a study investigating the differences between paired and solo labs,

found that in general, students in the pair-programming lab sessions showed a high

level of interaction with each other. Students discussed issues related to the

programming assignment on a consistent basis. Students questioned, directed, and

guided each other throughout the lab session. When student pairs could not seem to

answer questions on their own, they would ask the instructor; but the interaction with

the instructor was usually very brief (less than five minutes). Overall the paired labs

seemed to be much more efficient than the unpaired labs. Although there was a lot of

dialogue during the class it never seemed chaotic, as students seemed to stay focused

on their tasks. The paired labs provided structure to the communication between

students, which made it more effective than the unpaired labs.

They also noted that a lot of students’ questions to instructors were of a logistical rather

than conceptual nature. On a very frequent basis, pairs resolved their own problems

without the instructor’s help. Overall, instructors spent very little time answering

questions. Most instructor-student interactions seemed to take the form of extended

discussions. Students would want to know how to apply what they were doing to

www.manaraa.com

35

another scenario. Hypothetical discussions of applications showed evidence of higher-

level thinking processes that went beyond the scope of the programming assignment.

They observed self-management of groups and the way they were often able to

overcome their own programming difficulties.[60]

The main impact of pair programming in the CS1 course is seen in the lab[60]. The lab

work is meant to reinforce lecture topics and the material found on the exams. Results

indicate that student pair programmers are more self-sufficient in lab and are more

likely to complete the class with a grade of C or better[60]. It is possible that pair

programming in the labs provided enough of an attitudinal boost to motivate weaker

students to continue working on passing the class when they might otherwise give up.

Closed labs are excellent for controlled use of pair programming [8]. The instructor can

ensure that people are, indeed, working in pairs at one computer and ensure that the

roles of driver and navigator are rotated periodically[40]. However, many courses have

programming assignments that require development outside of a closed lab and it

would be difficult to enforce pair programming in this case. It is the hope that a

majority of students will come to fully appreciate the benefits of pair programming and

will seek to work with a partner outside of class[60]. Others will choose to work alone,

whether they prefer pair programming or not, often because they would prefer to work

on homework in the comfort of their dorm room at any hour of the day or night when

collocation may not be feasible. Educators have suggested the use of distributed

software development packages[18, 21] that have tools that simulate human actions

such as gesturing built in to overcome this concern. Pairing outside of lab requires

www.manaraa.com

36

effort in planning and coordination; some students view the added coordination as a

hassle[60].

www.manaraa.com

37

Chapter 3

3.0 Methodology

In the 2005-6 academic year, an experiment was conducted to investigate the benefits

of self-selection and random pairing with pair rotation by monitoring students enrolled

in the undergraduate introductory programming, CS1, courses taught at Norfolk State

University (NSU). The introductory course used a breadth first approach to teach the

C++ programming language. The course included typical introductory content: types,

loops, conditionals, scope, arrays, searching, sorting, and static variables. The course

also emphasized software engineering practices regarding testing, debugging, and

documentation.

The courses were taught with either three 50-minute or two 75 minute lectures and

one two-hour lab each week. The lecture course, CSC 170: Computer Programming I,

and the lab course, CSC 170L: Computer Programming I Laboratory, were two

separate courses; therefore students received two separate grades, one for the lecture

course (CSC 170) and one for the lab course (CSC 170L). Each course will be

addressed individually. Students attended lectures in groups of not more than 27 and

labs in groups of not more than 40 with others from any lecture section.

Computer Programming I

www.manaraa.com

38

The lecture course is a service course and is therefore taken by many students

throughout the School of Science and Technology. Most students are from the

computer science department and are either freshmen or sophomores. However,

students of all undergraduate and graduate levels may take the course.

Student grades in the lecture course were based on three exams, one final exam,

quizzes, lab assignments, a written assignment and programming projects that were

completed outside of the closed lab and the lecture course class meetings. The

programming projects are generative, that is the students start the project from scratch

without any structure imposed by the instructor. Students were only allowed to

complete the programming projects as a pair, all other assessments were measured

individually.

Computer Programming I Laboratory

The closed labs were a new addition to the computer science department at NSU;

therefore the lab was required for all newly entering freshmen CS majors only. Any

other students, non-majors or CS majors repeating the course, were not required to

also enroll in the closed labs due to their previously chosen curriculum and catalog

year. However, their enrollment into the labs was highly encouraged.

The lab period was run as a closed lab where students were given a weekly

assignment to complete during the allotted time. Lab assignments were “completion”

assignments where students were required to fill in the body of methods in a skeleton

of a program prepared and provided by the instructor.

Students’ grades in the lab course were based on the lab assignments. Twenty percent

of each weekly lab assignment was based on the peer evaluation submitted by the

www.manaraa.com

39

pairing partner. There were no individual assignments in the lab course. All students

were expected to use pair programming and complete all lab assignments in a pair.

All students participated in both self-selection and random pairing. The students

were required to evaluate their experience with their partner at the conclusion of each

programming assignment and at each rotation in the laboratory course.

Pair rotation was used to facilitate a number of reasons listed in Chapter 2,

specifically to expose the students to more students currently enrolled in the class

than they would normally meet and to give the students the comfort in knowing that

they do not have to work with the same partner for the entire semester. An additional

reason to implement was to aid in handling dysfunctional pairs. Peer evaluation was

used to obtain multiple forms of feedback regarding each one of the pair. This

feedback allowed the researcher to get data on a particular student’s participation with

each pair programming exercises.

The researcher decided to only use two methods of pair formation; self-selection and

random pairing. Random pairing is commonly used in CS education. Self-selection

is not as common at the CS1 level. Self-selection was used because the researcher

believed that giving the student the option to choose their partner on occasion would

aid in the satisfaction and enjoyment of the CS1 course and that it would not yield any

adverse results. In fact, at the CS1 level, the researcher believed that the students do not

really know the background or work ethic of other students in the class therefore the

self-selection of a partner is effectively a random choice.

The researcher and two other independent faculty members, with no interest in the

research, taught all sections of the course and laboratories. All faculty members are

www.manaraa.com

40

seasoned in the instruction of programming development courses and were trained to

use pair programming at the CS1 level course. One teaching assistant for all sections of

each course assisted with the grading of all assignments and therefore eliminated any

bias of the researcher on completed assignments. Students were required to attain a

grade of C or better to pass each class.

3.1 Sample

All students enrolled in the lecture and laboratory courses were observed for the study.

Students may consist of any classification level and any major enrolled in the lecture

course. The laboratory students were expected to be all entering freshmen computer

science majors.

3.2 Instrumentation

Two instruments were employed for data collection in this research. They include the

demographic data sheet and the peer evaluation form (PEF). Both instruments were

designed by the author for this particular study. A description of both instruments

follows.

3.2.1 Demographic Data Sheet

This form was designed and populated by the author. The information contained in the

data sheet was obtained from the student information database at NSU. The form

contains the following list of information for each student. (see Appendix D)

1. Scholastic Aptitude Test (SAT) math score
2. High school GPA
3. College GPA (if a transfer student)
4. Hometown City
5. Hometown State
6. Gender

www.manaraa.com

41

7. Major

3.2.2 Peer Evaluation Form (PEF)
This form was designed to collect student reflections of their experience with pair

programming and working with their partner. The PEF was based on the peer

evaluation assessment tool developed and used by Dr. Laurie Williams in many of her

research studies[67]. (see Appendix B)

The peer evaluation form was administered in class at the completion of every

laboratory and programming assignment in each course. The survey consisted of

questions related to the students’ perceptions of pair programming, questions for

evaluating their partner in relation to their activity with pair programming, and free-

response questions to provide anecdotal statements regarding the students’ experience.

Students were asked for their name so that a classification and gender relationship

could be established. Students ranked the following statements with strongly disagree,

disagree, neutral, agree, and strongly agree:

(Q1) My partner made a serious effort to complete the assigned work.

(Q2) My partner contributed to team efforts.

(Q3) My partner was technically capable of completing this week’s lab exercise.

(Q4) My partner and I were compatible when we worked together on this

exercise.

(Q5) My partner helped me to complete this exercise.

(Q6) I enjoyed working with my partner on this exercise.

(Q7) My partner improved my ability to complete this exercise.

(Q8) The quality of this programming exercise was improved because my partner

and I worked together.

(Q9) My partner treated me with respect while working on this exercise.

(Q10) I was more confident completing this exercise because my partner worked

www.manaraa.com

42

with me.

All other questions were free-response questions. Students were asked if they selected

their partner and if not, would they have rather had the option to select their partner and

why. Students were also queried on how long they have known their partner and to list

other courses that both were currently enrolled in during that particular semester. The

final 3 free response questions on the PEF asked did they enjoy the pair programming

experience with this partner, what was the partner's most significant contribution and

was most irritating about working with this partner.

3.3 Procedure

Participants were observed in their classes, where all instructors agreed to administer

the research plan (see Appendix A) and surveys. Participants were not told the specific

objective of this research but were advised by a statement included on the syllabus that

they were participating in a study aimed at increasing student retention. A statement

was also read aloud to the class that informed the students of their right to not

participate without penalty although their participation was highly encouraged.

The lecture course was taught as it had been in many years but now included the

addition of several key techniques. Pair programming was implemented for the

software development of all programming projects. Peer evaluation was used to assure

faculty members that all students were contributing to the development of the

programming assignments. Pair rotation was employed to allow students to meet more

students in the classroom and to decline the chances of pairing with a parasitic partner.

Pair formation consisted of either random pairing or self-selected pairing. Random

pairs were formed based on computer generated software. The software assigned a

www.manaraa.com

43

number to each student enrolled in the class and then assigned pairs based on those

numbers. Students were not allowed to pair with someone that they had previously

paired. All students in both the lecture and the laboratory courses were expected to

participate in pair programming, pair rotation, peer evaluation, and prescribed methods

of pair formation.

All students were given a mini-lecture on pair programming. The students were also

placed in pairs to solve a simple problem during a regularly scheduled lecture meeting.

This allowed the students to get a sense of what pair programming is before having to

complete assignments outside of the classroom.

In the lecture course, the students were required to complete six programming

assignments administered during the semester in addition to other instruments, quizzes

and tests, used to assess the individual learning of the course material (which is outside

the scope of this research). There is a plethora of documented research that suggests

that pair programming does not hinder individual student learning [32, 33, 35, 40, 61,

64, 65, 67].

Specifically, five pair rotations occurred during the semester in the lecture course and

weekly (13) pair rotations occurred in the lab. All students were not permitted to pair

with a previous partner within the same class unless it could not be avoided in the

laboratory course due to low enrollment. Students completed peer evaluations at the

conclusion of each programming or laboratory assignment and then rotated to a new

partner.

www.manaraa.com

44

All programming assignments were graded by each instructor or TA based on the

requirements of the program. The peer evaluation forms (PEF) submitted by each

student’s partner comprised 20% of the final grade for each programming or laboratory

assignment. The PEFs were administered at the conclusion of each programming

assignment and every lab assignment. The students rated their partner’s contribution to

the pair programming activity. Specifically, students answered all questions located on

the peer evaluation form, however only a subset of the questions was used to measure

the partner’s performance. The following table shows the questions the students

answered to determine the partner evaluation points given to their partner.

Table 1: Questions used to Evaluate Partner
Strongly
Disagree

Disagree Neither agree
nor disagree

Agree Strongly
Agree

1. My partner made a serious effort
to complete the assigned work.

2. My partner contributed to team
efforts.

3. My partner was technically
capable of completing this
week’s lab exercise.

4. My partner helped me to
complete this exercise.

5. My partner treated me with
respect while working on this
exercise.

The answers were scored from 0 (Strongly Disagree) to 4 (Strongly Agree). The

maximum score that a student could receive from their partner was a score of 20 points

received from the peer evaluation. The remaining 80 points were obtained from the

actual merit and implementation of the programming solution. Those assignments were

graded as a pair, in that both students of the pair received the same score for the eighty

www.manaraa.com

45

percent of the programming solution. The other 20% allowed students within a pair to

have varying final scores for each programming assignment.

Only programming and lab assignments were graded as a pair. All other assignments,

tests, quizzes, and final exam, were tested individually. These grades measured the

individual learning of each student. In addition, common questions within the quizzes

and exams were distributed to all sections to assess common material within all

sections. A common final exam was given to all students taking the CS1 lecture

programming course.

In the lab course, students participated in weekly completion assignments and worked

as a pair using pair programming to complete the assignments. Each assignment’s

grade was composed of 80% merited toward the actual programming development

solution and 20% awarded based on the peer evaluation. There were no other

assignments that contributed to the final grade awarded in the lab course and no

assignments that measured the individual learning of the students. That aspect seemed

to be unnecessary since all students enrolled in the lab course were also enrolled in the

lecture course and there were many instruments used to measure individual student

learning in the lecture course.

Students in the lab environment were paired two different ways. During all even weeks

the lab was in session, students were randomly assigned a partner by the teaching

assistant (TA) at the beginning of the lab section using a random pair generator. If one of

the pair did not attend, the partner was reassigned to another single partner or a pair was

made into a triple, no one worked alone. During odd weeks, students had the opportunity

www.manaraa.com

46

to self-select their partners – as long as it was not someone they had worked with

previously. Students dissatisfied with their pair were not reassigned. Careful preparation

was made to ensure that the lab assignments given to the students would meet (not

exceed) the two-hour time requirement, and that there was enough work for two to three

students to complete. At the conclusion of each lab, all students were required to fill out

a peer evaluation form in order to; (1) ensure one peer is not completing more of the

assignment than the other, (2) have students learn the evaluation process early, and (3) to

create a paper trail of measurements in the form of student responses about how effective

their pair experiences were as a first time programmer.

Students rated their experience based on enjoyment while working in a pair to complete

the assignment and whether they would rather self-select their partner and if they found

a difference in working with a partner they self-selected versus a partner assigned to

work with them.

3.3.1Baseline data
The class results were measured against students that were enrolled in the same course

during the fall 2004 semester. During that semester, no students participated in pair

programming therefore all items used to measure performance were tested individually.

The math score for the Scholastic Aptitude Test (SAT-M), and high school grade point

average (HS-GPA, required of all new freshmen for entrance into the university) or

college grade point average, (C-GPA, required of all transfer students) were used to

determine if the students enrolled in both semesters were students with equivalent

aptitude and academic preparation to succeed in computer science. These metrics were

used in a similar study completed at North Carolina State University to show that

www.manaraa.com

47

students were not uniformly distributed across all groups [17]. The mean SAT-M for

the students enrolled during the Fall 2004 semester was 461.67 with a standard

deviation of 85.46 while the Spring 2006 students has a mean score of 463 with a 77.67

SD. The mean GPA for the students enrolled during the Fall 2004 semester was 2.48

with a standard deviation of 0.48 while the Spring 2006 students had a mean score of

2.537 with a 0.51 SD The analysis on the SAT-M and the GPA using the One-Way

ANOVA showed that the students enrolled during the Fall 2004 semester were

intellectually comparable to the students enrolled during the Spring 2006 semester. The

differences are not statistically significant.

Table 2: Students' SAT-M and GPA Information

SAT-M Std. Deviation GPA Std. Deviation

Fall 2004 461.67 85.46 2.48 0.48

Spring 2006 463 77.67 2.537 0.51

3.4 Hypotheses

To investigate the effects of self-selection pair formation on CS1 students and its

relationships to pair programming and retention, the researcher developed three

hypotheses that follow along with its’ rationale

Hypothesis 1: Satisfaction for pair programming is higher in CS1 when pairs self-

select their partners.

Alternative: Satisfaction for pair programming is not increased when students self-

select their partner.

Rationale: This hypothesis was developed to investigate satisfaction when CS1

students select their partners.

www.manaraa.com

48

Resolution: To investigate H1, an ANOVA was used to determine when students self-

select their partners by selecting yes to Q12, “Did you select your partner?”, do more

students answer the questions, “Q6: I enjoyed working with my partner on this

exercise.”, and “Q7: My partner improved my ability to complete this exercise“ at

higher rates than when students partners are assigned.

Comments to questions “Q14: Did you enjoy the pair programming experience with

this partner?” were coded into positive (1) and negative (0) responses. Those values

were evaluated and compared based on the individual response to “Q12, Did you select

your partner?” Responses to the questions “Q15: What was the partner’s most

significant contribution?”, and “Q16: What was the most irritating about working with

this partner?” were used to supply anecdotal data.

Hypothesis 2: Self-selection pairs perform as well as or better than randomly assigned

pairs in CS1 on individual assignments.

Alternative: Self-selection pairs do not perform as well as or better than randomly

assigned pairs in CS1 on individual assignments.

Rationale: This hypothesis was developed to show if there is a relationship between

self-selection pairs and individual assignments. The research intends to prove that

allowing a student to self-select their partner does not hinder a student’s performance

on individual assignments.

Resolution: To investigate H2, an ANCOVA will be used to determine if students self-

select their partners by answering yes to Q12, “Did you select your partner?,” do more

students receive equivalent scores on individual assignments.

www.manaraa.com

49

A Chi-Square test will be used to determine the statistical difference in success rates on

exam grades when a student participated in self-selection pair formation and random

pair formation, when answering yes to Q12, “Did you select your partner?”

Hypothesis 3: Pair programming in CS1 increases retention of CS majors.

Alternative: Pair programming does not increase the retention of CS majors.

Rationale: This hypothesis was developed to explore a relationship between pair

programming and CS major retention.

Resolution: Retention will be analyzed by comparing all computer science majors

enrolled in the lecture course in fall 2004 (baseline data), fall 2005 (1st implementation

of research measures) and spring 2006. The students of each semester will be

categorized by major, gender and successful completion of the first CS course.

Students for each semester will be identified first by successful completion. The

researcher will assume that a student who does not pass the class will interpret the

failure as a negative experience and therefore will be more likely to change their major

therefore the first goal of increasing the retention rate is to increase the passing rate.

The students will then be identified by major. The researcher’s goals are to retain

students who have identified computer science as their major. Genders of these

students will also be analyzed to identify if the research measures improved the female

retention rate.

The CS majors of fall 04 will be divided into 3 categories and each category will then

be divided by gender to reveal retention statistics by gender. The first category (1) will

contain students who successfully passed the course and enrolled in the next course

during the next semester; these students will also be identified if they remain a CS

www.manaraa.com

50

major one-year later (this is especially important because the highest attrition occurs at

the conclusion of the first year of study.) The second category (2) will contain students

who do not successfully pass the first course, but remain in the major by repeating the

course in the ensuing semester. The percentage of these students will also be analyzed

to investigate if they remained a CS major one-year later. Both categories one and two

will be considered retained students. The third category (3) will identify students that

change their major at the conclusion of the first semester or at the end of the first year

regardless of completion of the course. These students will be considered to be non-

retained at each intersession.

All of the categories will yield percentages to which fall 2005 and spring 2006 data can

be compared. Retention statistics will be reported in percentages relative to the original

data at the beginning of the fall 2005 semester since it is the first semester with

implemented measures to increase retention. A Chi-square test will be used to report

statistical significance.

3.5 Data Analysis

All analyses will be conducted via SPSS Statistical software and Microsoft Excel. All

statistical measurements will be analyzed at the 95% confidence level. The following

list identifies all preliminary statistics used to show that the students are of equal

caliber. All other statistics used are identified in the Hypotheses section of this chapter.

 The mean SAT-M and HSGPA for 2 semesters, F04, &, S06. These tests were used

to identify that the students are of equal caliber.

 A one way ANOVA (T-test) on SAT-M and HSGPA was used to further show that

the students are comparable to the students enrolled in Fall 04.

www.manaraa.com

51

 Final grades were used to determine passing percentages and were compared from

fall 2004 to spring 2006. The Chi-Square test was used to confirm previous studies

that pair programming increases learning and that the statistical difference is

significant.

 Questions 1 through 10 on the PEF were coded Strongly Disagree (1) to Strongly

Agree (5) so that quantitative statistics could be performed and compared to basic

percentages.

www.manaraa.com

52

Chapter 4

4.0 Observations

A formal experiment was implemented at Norfolk State University (NSU) to

investigate the methods to form pairs at the CS1 level that influence satisfaction within

the course and to validate the effectiveness of pair rotation and its relationship to pair

formation in CS1. In the fall of 2005, introductory programming was taught to 78

students who were mainly freshmen and sophomore undergraduate students of various

science majors. A subset of the group, 40 freshmen CS majors, was also enrolled in an

introductory programming laboratory course. The students formed pairs by self-

selecting their partners or by having their partner randomly assigned to them to

complete the majority of the programming assignments. The purpose of the class was

to pilot the research plan before implementing the formal experiment.

4.1 Pilot Study

The students enrolled in the lab course switched partners weekly. On the odd week, the

pairs were formed by self-selection and on the even week, the pairs were formed

randomly. The students completed a paper peer evaluation each week and were told

that the rating given to them by their partner comprised 20% of their weekly lab score

as well as their programming assignment grade in the lecture course. There were many

problems that arose.

www.manaraa.com

53

The first problem was that first-year students are inexperienced in evaluation

techniques. Peer evaluation was initially used in fall 2005 to facilitate individual

accountability in paired programming assignments; however, studies suggest that

“peer evaluation is not a good tool for motivating students”[10, 51]. When dealing

with students in their 1st CS course, motivation must be considered since most

students are unsure of their academic major election. Attrition in CS is a nationwide

problem, so the researcher decided to reduce as many antagonistic points as possible.

Furthermore, comments from students during the fall semester suggested that students

were not evaluating their partners based on their performance because they did not

want to be responsible for decreasing their partner’s final score. Students also asked

the researcher, “How did I get a lower grade than my partner?” When told it was due

to the peer evaluation, the students would then mentally recount the activities and

suggest they did more work than their partner. At the end of the fall 2005 semester,

the evaluations were reviewed and further supported the students’ comments. Many

students elected to give the highest scores because they did not want to “bring anyone

else down.” This caused the data to be extremely skewed and did not represent whether

or not the student actually participated in the pair programming process.

Analysis of the data from fall 2005 showed most students were evaluated with the

highest scores. Only in the case where a student did absolutely nothing, did the partner

evaluate the student with low marks. Table 3 shows the percentages of answers

provided by the students during the fall 2005 semester.

www.manaraa.com

54

Table 3: Response Distribution for Fall 2005
Strongly
Disagree

Disagree Neither agree
nor disagree

Agree Strongly
Agree

1. My partner made a serious effort to
complete the assigned work.

0.73% 0.36% 1.10% 13.6% 84.1%

2. My partner contributed to team
efforts.

0.73% 0.36% 1.47% 11.3% 86%

3. My partner was technically capable
of completing this week’s lab
exercise.

0.73% 0.36% 1.83% 13.2% 83.8%

4. My partner and I were compatible
when we worked together on this
exercise.

0.73% 0.36% 1.83% 11.3% 85.6%

5. My partner helped me to complete
this exercise.

0.36% 0.73% 1.83% 11.3% 85.6%

6. I enjoyed working with my partner
on this exercise.

0.36% 0.73% 3.30% 11.7% 83.8%

7. My partner improved my ability to
complete this exercise.

0.36% 0.73% 2.94% 13.6% 82.3%

8. The quality of this programming
exercise was improved because my
partner and I worked together.

0.36% 0.73% 2.20% 11.7% 84.9%

9. My partner treated me with respect
while working on this exercise.

0.36% 0.73% 1.10% 10.6% 87.2%

10. I was more confident completing
this exercise because my partner
worked with me.

0.73% 0.36% 3.30% 12.8% 82.7%

This phenomenon suggested a need for change to obtain accurate data. During the

spring 2006 semester, the researcher decided to use the peer evaluation as a means to

evaluate the students’ experience with pair programming with a particular partner

working on one assignment for 2-3 weeks in the lecture course or with multiple

assignments for 2-3 weeks in the lab course. The students were advised to give their

honest evaluation of their experience and that their responses would not influence the

partner’s grade. Students were not asked to evaluate their partner but to evaluate their

experience with pair programming. Teaching assistants were used to evaluate the

students’ performance in the laboratory course. The online PEF responses for spring

2006 suggested that this particular change was very beneficial. Analysis of the

responses showed a better distribution across all evaluation categories and suggests

that the problem was corrected in the spring 2006 semester.

www.manaraa.com

55

The second problem that contributed to the skewed data was the paper surveys. Since

the surveys were filled in by hand and expected to be given to the instructor before

leaving the classroom, some students would wait to see what their partner would give

them and then assess their partner with the same scores. Students did not give their

honest assessments for fear of retribution by their partner. This problem was corrected

by building the survey into an online system. The students were then required to

complete the online survey within one week of completion of the assignment. The

students could then wait to complete the survey at their convenience at any computer

with an internet connection. It appeared that students gave more honest reflections of

their experiences because their partners were not around.

The third problem was the frequency in which the survey was administered. The survey

was administered every week in the lab course and five times during the semester in the

lecture course. Therefore a student enrolled in the lecture and lab course was exposed

to the survey as many as 17 times within the semester. This exposure was too often for

these students. By the mid-term advisory period, students began to just check the items

without reading the questions. This problem was corrected in the lab course by having

the student complete the online survey after working with a particular partner for 3-4

weeks. This reduced the exposure of the survey for a student enrolled in the lecture and

lab course to a maximum of 9 times within the semester.

Another problem was the frequency in the partner rotation in the lab course. During the

fall semester, students rotated partners weekly in the lab course. The students knew that

they only had to work with a particular partner for a maximum of 2 hours per week

www.manaraa.com

56

therefore whether they selected their partner or the partner was assigned to them had no

influence on their experience. This problem was addressed by requiring lab students to

work with a single partner for 3-4 weeks and complete 3-4 assignments, and then

evaluate their experience with pair programming as it related to working with a single

partner on multiple assignments.

The final problem that was addressed was whether or not the students were actually

performing true pair programming as defined by Extreme Programming in the lecture

course. This problem manifested in many ways, some faculty members had to be

convinced by the researcher that pair programming is not one person working on partial

code and sending it to their partner via email and in essence that no code should be

changed without both partners being present. To address this problem, a question was

added to the survey to determine the actual work methodology employed by the

students. Students could select one of 4 choices; whether they worked alone,

programmed alone and shared code via email or the equivalent, programmed as a pair

by sharing one computer for the entire assignment, or other, in this case the student

could describe how the pair completed the assignments. The students were told to

complete the survey accurately and that there would be no retribution grade wise.

Spring 2006 faculty members teaching the CS1 courses were provided training on the

practice of pair programming and were told to highly encourage the true practice for all

assignments. Real Virtual Networking Computer (VNC) was also introduced to the

students in the researcher’s class to aid in the collocation requirement of pair

programming.

www.manaraa.com

57

4.2 Official Experiment

The official experiment was implemented in the spring of 2006. The students consisted

of 52 freshmen and sophomore undergraduate students of various science majors

enrolled in two sections of the CS1 course and a subset of 25 freshmen CS majors

enrolled in two sections of the introductory programming lab course that accompanies

the lecture course. All of the students were considered to be novice programmers and

for most students these courses were their first introduction to program development

using a high level programming language. In the lecture course, the students completed

six programming assignments during the semester. The students selected their partner

for assignments one and four, were assigned partners for assignments two and five,

completed assignment six individually, and were given the choice to self-select their

partner or work individually to complete assignment three.

In the lab course, the students completed a new lab assignment weekly therefore

completing fourteen lab assignments during the semester. The students were allowed

to self-select and work with the same partner for three weeks. At the conclusion of the

three weeks, a new partner was then assigned to the student and the pair worked

together for the next three week period (completing three lab assignments during the

three week period). The students alternated self-selection and assigned pairing

throughout the entire semester effectively completing four rotations during the

semester. At each rotation, the student obtained a partner that they had not previously

worked with.

www.manaraa.com

58

The lecture and lab courses were structured quite differently. The pairs in the lecture

class worked together on one assignment for a period of two-three weeks. The pairs in

the lab course worked together on three different assignments during their 2-3 week

timeframe. It is important to note that when determining whether a pair had worked

together previously, the students were only bound by the particular class. For example,

if a student had worked with a particular partner in the lecture course, that did not

exclude the same pair from forming in the lab course.

4.2.1 Sample

Two sub-groups of undergraduate students were observed for the study. The first group

represented 28 students enrolled in section 01 (LEC1) and 24 students enrolled in

section 02 (LEC2) of the CS1 programming lecture course. The second group

represented 16 students enrolled in laboratory section 01 (LAB1) and 9 students

enrolled in laboratory section 02 (LAB2). The researcher only taught LEC2, all other

courses were taught by the independent faculty members. The fifty-two students

represented 37 males, 15 females, 27 CS majors, 25 non-majors, 18 male CS majors

and 9 female CS majors.

4.2.2 New Data Collection Instrument (Spring 2006): Online Peer Evaluation

Form (OPEF)

The Online Peer Evaluation Form was the peer evaluation form built into an online

database system. The OPEF consisted of the same questions on the PEF but also

included an additional question on the work methodology of the pair. (See Appendix C.)

www.manaraa.com

59

Students used their NSU email addresses and ID numbers as their username/password

combination when submitting online survey responses. The surveys could be completed

from any computer with internet access. The participants were asked to complete the

OPEF within one week of completing the assignment. In most cases, completion of the

survey occurred within one week of the assignment; however, one of the faculty

members allowed the students lecture class time to complete the survey once for those

students who had not completed the survey. Individual surveys could not be edited by

anyone once they were completed. The researcher and the students were able to view

only the completed surveys once submitted.

All programming assignments were graded by each instructor or TA based on the

requirements of the program. The OPEF surveys were administered at the conclusion of

each programming assignment and every third lab assignment where the students rated

their experience with pair programming. Specifically, students answered all questions

located on the online peer evaluation form. Students rated their experience based on

enjoyment while working in a pair to complete the assignment and whether they would

rather self-select their partner and if they found a difference in working with a partner

they self-selected versus a partner assigned to work with them.

4.3 Achievement

Achievement was measured by the number of students that successfully completed the

course with a grade of C or better versus those that received a D, F, or withdrew during

the semester. The study found that during the Fall 2005 and Spring 2006 semesters

where all students participated in pair programming, 66% and 58%, respectively, of the

www.manaraa.com

60

students successfully completed the course with a grade of C or better. Comparatively,

during the fall 2004 semester where no students participated in pair programming, only

42% of the students successfully completed the course. A Chi-Square test comparing

fall 2004 to fall 2005 revealed that the difference in achievement rates is statistically

significant, p =.048. This result is consistent with a similar study completed at North

Carolina State University [17] which concludes that pair programming improves a

student learning to program in a CS1 level course. The addition of pair programming

shows that it helps students pass the class with a grade of C or better regardless of the

method of pair formation.

The Chi-Square comparing fall 2004 (baseline data) to spring 06 does not reveal a

statistically significant increase, p= .327, which is consistent with a similar study at the

University of California at Santa Cruz [34, 35] that measured the passing rates of

pairers and non-pairers that actually took the final exam. Fall 2005 students consisted

of 63% computer science majors therefore the researcher suggests that those students

have a different motivation for passing than the students that have not chosen computer

science as their academic discipline. Table 4 shows the mean GPA, SAT-M,

percentages of majors, pass rates, and probability of the Chi-Square test for each

semester.

Table 4: Achievement Factors by Semester
GPA SAT-M CS Major

Percentage Pass Rate Chi-Square
results (p)

Fall 2004
(baseline data)

2.527 460 29% 48%

Fall 2005 2.579 453 63% 66% .048

Spring 2006 2.518 463 52% 58% .327

www.manaraa.com

61

4.4 Results

The data was collected and analyzed in many ways. When observing all of the data,

regardless of pair formation methodology, the researcher found that the students overall

had positive experiences with the methodology implemented. Table 5 shows the

students’ OPEF responses to questions 1 through 10 for spring 2006 in percentages.

The normalized distribution of student responses suggests that the students provided

more honest reflections of their pair programming experience.

Table 5: Response Distribution for Spring 2006
Strongly
Disagree

Disagree Neither agree
nor disagree

Agree Strongly
Agree

1. My partner made a serious effort to
complete the assigned work.

6.25% 4.68% 15.6% 36.7% 36.7%

2. My partner contributed to team
efforts.

5.42% 5.42% 13.9% 37.2% 37.9%

3. My partner was technically capable
of completing this week’s lab
exercise.

4.68% 3.90% 18.7% 39.8% 32.8%

4. My partner and I were compatible
when we worked together on this
exercise.

4.68% 3.90% 15.6% 42.9% 32.8%

5. My partner helped me to complete
this exercise.

4.65% 4.65% 17.8% 38.7% 34.1%

6. I enjoyed working with my partner
on this exercise.

7.03% 5.46% 17.1% 36.7% 33.5%

7. My partner improved my ability to
complete this exercise.

6.92% 6.92% 18.4% 33.0% 34.6%

8. The quality of this programming
exercise was improved because my
partner and I worked together.

6.97% 6.20% 17.0% 37.9% 31.7%

9. My partner treated me with respect
while working on this exercise.

3.10% 1.55% 17.0% 43.4% 34.8%

10. I was more confident completing
this exercise because my partner
worked with me.

6.97% 5.42% 18.6% 34.1% 34.8%

These responses suggest that the majority of CS1 students are satisfied with their

experience when placed in an academic environment that uses pair programming, pair

evaluation, pair rotation, and two methods of pair formation.

www.manaraa.com

62

4.5 Hypotheses Analysis

The main objective of the research is to prove that self-selection pairing is a beneficial

pedagogical technique that increases the satisfaction of CS1 students that ultimately

leads to greater retention of CS majors. To investigate the objective several hypotheses

were explored in part:

Hypothesis One: Satisfaction for pair programming is higher in CS1 when pairs self-

select their partners.

Alternative: Satisfaction for pair programming is not increased when students self-

select their partner.

Resolution: All questions were coded one (1) Strongly Disagree to five (5) Strongly

Agree so that quantitative analysis could be performed. An ANOVA was used to

determine when students self-select their partners by selecting yes to Q12, “Did you

select your partner?”, do more students answer the questions, “Q6: I enjoyed working

with my partner on this exercise.”, and “Q7: My partner improved my ability to

complete this exercise“ at higher rates than when students partners are assigned.

In the lab course for Q6, the mean rating students gave when self-selecting (answering

yes to Q12) their partner was very high, 4.800 and the mean rating when the partners

were assigned randomly was 4.042. In the lecture course for Q6, the mean rating

students gave when self-selecting was 4.111 and was 3.500 when the partners were

assigned. Overall for both the lab and lecture, the average for Q6 was 4.226 when the

pairs used self-selection to implement pair formation and 3.688 when the pairs were

www.manaraa.com

63

randomly assigned. Charts 2 and 3 display the graphical representations of the mean

scores.

Mean Rating on Q6 When Pairs Were Self-Selected

4.111

4.800

4.226

0.000

1.000

2.000

3.000

4.000

5.000

Self-Selection

M
ea

n
R

at
in

g

CSC-170

CSC-170L

CSC-170/170L

Chart 1 : Mean Self-selection Ratings to Q6

Mean Rating on Q6 When Pairs Were Randomly Assigned

4.042

3.500
3.688

0.000

1.000

2.000

3.000

4.000

5.000

Random Assignment

M
ea

n
R

at
in

g

CSC-170
CSC-170L
CSC-170/170L

Chart 2 : Mean Randomly Assigned Ratings to Q6

The ANOVA for Q6, p < 0.05, shows that the increase is statistically significant for all

comparisons.

In the lab course for Q7, the mean rating students gave when self-selecting their partner

was also high, 4.600, and the mean rating when the partners were assigned randomly

www.manaraa.com

64

was 3.917. In the lecture course for Q7, the mean rating students gave when self-

selecting was 4.000 and was 3.519 when the partners were assigned. The combined lab

and lecture self-selection paired average for Q7 was 4.113 and was 3.663 when the

pairs were randomly assigned. Charts 3 and 4 show the graphical representations of the

mean scores.

Mean Rating on Q7 When Pairs Were Self-Selected

4.000 4.113
4.600

0.000

1.000

2.000

3.000

4.000

5.000

Self-Selection

M
ea

n
R

at
in

g

CSC-170

CSC-170L

CSC-170/170L

Chart 3: Self-Selection Mean Rating to Q7

Mean Ratings to Q7 When Pairs Were Randomly Assigned

3.917

3.519 3.663

0.000

1.000

2.000

3.000

4.000

5.000

Random Assignment

M
ea

n
R

at
in

g

CSC-170

CSC-170L

CSC-170/170L

Chart 4: Random Mean Rating to Q7

www.manaraa.com

65

The ANOVA for Q7, p < 0.05, shows that the increase is statistically significant across

all comparisons.

Comments to questions “Q14: Did you enjoy the pair programming experience with

this partner?” were coded into positive (1) and negative (0) responses. Those values

were evaluated and compared based on the individual response to “Q12, Did you select

your partner?” Responses to the questions “Q15: What was the partner’s most

significant contribution?”, and “Q16: What was the most irritating about working with

this partner?” were used to supply anecdotal data.

In response to Q14:”Did you enjoy the pair programming experience with this partner?

the following results were discovered; students overall had positive experiences

whether their partner was self-selected or the partner was assigned to them. In

CSC170, when the student self-selected their partner, 91% of the student responses

were positive compared to 69% positive responses when the pairs were assigned

randomly. This represents a 22% increase in the enjoyment of the student when they

self-select their partner compared to having the partner assigned to them. In CSC170L,

the lab course, the difference is not as large but there is still an increase. When the

students self-selected their partner, 100% of the students enjoyed the programming

experience, comparatively when the partners were assigned, 89% of the students’

responses were positive.

www.manaraa.com

66

Table 6 : Positive Student Responses to Q14

CSC 170 CSC170L

Randomly Assigned 69% 89%

Selection 91% 100%

% Increase of Self-Selection Pairing
Over Randomly Assigned Pairing

+22% +11%

The data suggests that students overwhelmingly favored self-selecting their partner

(92%) when compared to having the partner assigned to them (76%) when satisfaction

is a goal.

CSC-170/170L

0.000

1.000

2.000

3.000

4.000

5.000

1 2 3 4 5 6 7 8 9 10

Question Number

A
ve

ra
ge

R
at

in
g Random

Assignment

Self-
Selection

Chart 5: Mean Ratings by Question (All Courses)

Chart 5 displays that students rated all questions higher (mean score) when self-

selecting their partner over having their partner assigned to them randomly. The data

shows that students preferred to select their partner. Anecdotal evidence lists the

www.manaraa.com

67

following student responses as reasons to self-select their partner, “the partner that I

would have picked we would have done a better job, and more effort would have been

put into the project,” and “more comfortable with my last partner because I knew him

longer.”

Based on these findings, the research supports the hypotheses that satisfaction for pair

programming is higher in CS1 when pairs self-select their partners.

Hypothesis 2: Self-selection pairs perform as well as or better than randomly assigned

pairs in CS1 on individual assignments.

Alternative: Self-selection pairs do not perform as well as or better than randomly

assigned pairs in CS1 on individual assignments.

Resolution: An ANCOVA was used to determine if when students self-select their

partners by answering yes to Q12, “Did you select your partner?,” do more students

receive equivalent scores on individual assignments.

A Chi-Square test was used to determine the statistical difference in success rates on

exam grades when a student participated in self-selection pair formation and random

pair formation, when answering yes to Q12, Did you select your partner?

This hypothesis was only tested in the CSC170 lecture course since no individual

assessments were conducted in the lab course, CSC170L. Three exams and the final

exam were used to measure how students performed individually. The exams were

administered during weeks 4, 8, 12, and 16. Exam 1 and the final exam were common

across all sections. The final exam was the only exam considered to be fully

comprehensive however each exam was incremental in nature, and students were

expected to know any information that had been covered up to the exam date including

www.manaraa.com

68

material tested on previous exams. Students participated in self-selection pair

formation leading up to exams 1 and 3 and random pairing prior to exam 2 and the final

exam. Any grade of zero on an exam is not calculated in the average, the researcher

assumes that any student that actually took the exam would score above a numerical

score of 0.

On average, when students participated in self-selection pairing they performed better

on their exams than on the exams taken after participating in random pairing, as shown

in Table 7.

Table 7: Performance on Exam Scores by Pair Formation Method
Pairing Method

Exam
Self-Selection Random

Mean
Standard

Deviation

Exam 1 X 66.66 24.77

Exam 2 X 54.272 26.302

Exam 3 X 57.28 30.12

Final Exam X 53.7 18.6

In addition, when students were given the choice to self-select their partner or have a

partner assigned to them for programming assignment three, 76% of the students

elected to self-select their partner.

These exam averages show that students performed highest on the exams when they

participated in self-selection. The Chi-Square test, p = .0495, suggests the difference

in the number of students who pass the exams (receive a score of 70 or higher) is

statistically significant when the students participate in self-selection pairing.

www.manaraa.com

69

After evaluating student success by gender on individual assessments (intermediate

exams and the final exam) regardless of partner selection and overall class success; the

t-test shows that there is no significant difference in any of the variables. Group

statistics are shown in Table 8. The results of the t-test are shown in Table 9.

Table 8: Group Statistics by Gender

Pair Formation Assessment Student's Gender N Mean Std. Deviation Std. Error Mean

Male 37 63.11 25.583 4.206
Self-Selection Exam1

Female 15 66.53 32.656 8.432

Male 37 46.770 30.9230 5.0837
Assigned Exam2

Female 15 51.067 29.4515 7.6043

Male 37 43.24 35.812 5.888
Self-Selection Exam3

Female 15 46.07 37.240 9.615

Male 37 43.84 25.967 4.269
Assigned Final Exam

Female 15 45.87 28.943 7.473

Male 37 .57 .502 .083
Pass

Female 15 .60 .507 .131

www.manaraa.com

70

Table 9: Independent Samples Test by Gender

Levene's
Test for
Equality

of
Variances

t-test for Equality of Means

95% Confidence
Interval of the

Difference

Partner
Formation Assessment

F Sig. t df
Sig.
(2-

tailed)

Mean
Difference

Std. Error
Difference

Lower Upper

Equal
variances
assumed

.250 .619
-

.403 50 .688 -3.425 8.493 -20.484 13.633

Self
Selection Exam1 Equal

variances
not
assumed

-
.364 21.320 .720 -3.425 9.422 -23.002 16.152

Equal
variances
assumed

.000 .997 -
.460 50 .648 -4.2964 9.3414 -

23.0592 14.4664

Assigned Exam2 Equal
variances
not
assumed

-
.470 27.198 .642 -4.2964 9.1471 -

23.0584 14.4656

Equal
variances
assumed

.022 .882 -
.255 50 .800 -2.823 11.086 -25.090 19.443

Self
Selection Exam3 Equal

variances
not
assumed

-
.250 25.094 .804 -2.823 11.275 -26.039 20.392

Equal
variances
assumed

.139 .711 -
.247 50 .806 -2.029 8.214 -18.527 14.469

Assigned Final
Exam Equal

variances
not
assumed

-
.236 23.649 .816 -2.029 8.606 -19.806 15.748

Equal
variances
assumed

.203 .654 -
.210

50 .834 -.032 .154 -.342 .277

Course Success Equal
variances
not
assumed

-
.210

25.765 .836 -.032 .155 -.351 .286

www.manaraa.com

71

A One-way ANOVA was used at each assessment, holding the gender variable

constant, revealed there were no significant differences when student self-selected their

partner vs having the partner assigned as shown in Table 10.

Table 10: One-way Analysis of Variance by Gender

Pair Formation Assessment Sum of Squares df Mean Square F Sig.

Between Groups 125.218 1 125.218 .163 .688

Within Groups 38491.301 50 769.826Self Selection Exam 1

Total 38616.519 51

Between Groups 197.015 1 197.015 .212 .648

Within Groups 46567.731 50 931.355Assigned Exam 2

Total 46764.745 51

Between Groups 85.083 1 85.083 .065 .800

Within Groups 65585.744 50 1311.715Self Selection Exam 3

Total 65670.827 51

Between Groups 43.932 1 43.932 .061 .806

Within Groups 36002.760 50 720.055Assigned Final Exam

Total 36046.692 51

Between Groups .011 1 .011 .044 .834

Within Groups 12.681 50 .254Successful Course Completion

Total 12.692 51

A One-way ANOVA was performed at each assessment, holding the pre-registration

variable constant and identified there is no significant difference between students who

pre-registered and those who did not when students self-selected their partner vs having

the partner assigned as shown in Table 11.

www.manaraa.com

72

Table 11: Analysis of Variance by Pre-Registration

Pair Formation Assessment Sum of Squares df Mean Square F Sig.

Between Groups 37.011 1 37.011 .048 .828

Within Groups 38579.508 50 771.590Self Selection Exam 1

Total 38616.519 51

Between Groups 737.759 1 737.759 .801 .375

Within Groups 46026.987 50 920.540Assigned Exam 2

Total 46764.745 51

Between Groups 26.185 1 26.185 .020 .888

Within Groups 65644.642 50 1312.893Self Selection Exam 3

Total 65670.827 51

Between Groups 15.874 1 15.874 .022 .883

Within Groups 36030.819 50 720.616Assigned Final Exam

Total 36046.692 51

Between Groups .401 1 .401 1.633 .207

Within Groups 12.291 50 .246Pass Course

Total 12.692 51

After evaluating student success by pre-registration and their performance on individual

assessments (intermediate exams and the final exam) regardless of partner selection and

overall class success; the t-test shows that there is no significant difference in any group

performance. Group statistics are shown in Table 12. The results of the t-test are

shown in Table 13.

www.manaraa.com

73

Table 12: Group Statistics by Pre-registration

Pair Formation Assessment Preregistered N Mean Std. Deviation Std. Error Mean

Yes 29 63.34 29.382 5.456
Self-Selection Exam1

No 23 65.04 25.590 5.336

Yes 29 44.655 31.0098 5.7584
Assigned Exam2

No 23 52.239 29.4664 6.1442

Yes 29 44.69 35.852 6.658
Self-Selection Exam 3

No 23 43.26 36.714 7.655

Yes 29 43.93 25.285 4.695
Assigned Final Exam

No 23 45.04 28.706 5.986

Yes 29 .66 .484 .090
Successful Course Completion

No 23 .48 .511 .106

www.manaraa.com

74

Table 13: Independent Samples Test by Pre-registration

Levene's
Test for

Equality of
Variances

t-test for Equality of Means

95%
Confidence

Interval of the
Difference

Partner
Formation Assessment

F Sig. t df
Sig.
(2-

tailed)

Mean
Difference

Std. Error
Difference

Lower Upper

Equal
variances
assumed

.244 .623 -.219 50 .828 -1.699 7.756 -17.277 13.880

Self
Selection Exam1 Equal

variances
not
assumed

-.223 49.520 .825 -1.699 7.632 -17.031 13.634

Equal
variances
assumed

.215 .645 -.895 50 .375 -7.5840 8.4715 -
24.5995 9.4315

Assigned Exam2 Equal
variances
not
assumed

-.901 48.326 .372 -7.5840 8.4208 -
24.5121 9.3442

Equal
variances
assumed

.000 .987 .141 50 .888 1.429 10.117 -18.892 21.749

Self
Selection Exam3 Equal

variances
not
assumed

.141 46.819 .889 1.429 10.145 -18.983 21.841

Equal
variances
assumed

.433 .513 -.148 50 .883 -1.112 7.495 -16.167 13.942

Assigned Final
Exam Equal

variances
not
assumed

-.146 44.243 .884 -1.112 7.608 -16.442 14.217

Equal
variances
assumed

2.227 .142 1.278 50 .207 .177 .138 -.101 .455

Successful Course
Completion Equal

variances
not
assumed

1.270 46.103 .211 .177 .139 -.104 .457

www.manaraa.com

75

A One-way ANOVA was performed at each assessment, holding the major variable

constant and identified there is no significant difference between students who are

declared computer science as their major and those who did not when students self-

selected their partner vs having the partner assigned as shown in Table 14.

Table 14: Analysis of Variance by Major

Sum of Squares df Mean Square F Sig.

Between Groups 745.974 1 745.974 .985 .326

Within Groups 37870.545 50 757.411Self Selection Exam1

Total 38616.519 51

Between Groups 63.719 1 63.719 .068 .795

Within Groups 46701.027 50 934.021Assigned Exam2

Total 46764.745 51

Between Groups 858.380 1 858.380 .662 .420

Within Groups 64812.447 50 1296.249Self Selection Exam3

Total 65670.827 51

Between Groups 38.734 1 38.734 .054 .818

Within Groups 36007.959 50 720.159Assigned Final Exam

Total 36046.692 51

Between Groups .026 1 .026 .101 .752

Within Groups 12.667 50 .253Successful Course Completion

Total 12.692 51

Regression analyses (analysis of covariance) based on gender and whether the student

preregistered revealed there is no significant difference based on pair formation that

predicts success on exam one after selecting the partner (.897), success on exam two

after assignment the partner (.596), success on exam three after selecting the partner

(.961), success on the final exam (.958), nor whether the students passes the course

successfully (.450) as shown in Table 15.

www.manaraa.com

76

Table 15: Analysis of Covariance

Predictors: (Constant Variables) Pre-registration, Student’s Gender

Model Dependent Variables Sum of Squares df Mean Square F Sig.

Regression 170.114 2 85.057 .108 .897

Residual 38446.405 49 784.6211 Self Selection
Exam1

Total 38616.519 51

Regression 979.009 2 489.505 .524 .596

Residual 45785.736 49 934.4032
Assigned
Exam2

Total 46764.745 51

Regression 106.461 2 53.231 .040 .961

Residual 65564.366 49 1338.0483 Self-Selection
Exam3

Total 65670.827 51

Regression 62.855 2 31.428 .043 .958

Residual 35983.837 49 734.3644
Assigned
Final Exam

Total 36046.692 51

Regression .407 2 .203 .811 .450

Residual 12.286 49 .2515 Successful Course Completion

Total 12.692 51

The ANOVAs do not reveal any significant differences between gender, pre-

registration, pair formation and any exam scores. The majority of students received

equivalent scores on their exams. In addition, the ANCOVA does not reveal any

predictors that suggest a major contributor to class success. The research supports the

hypotheses that self-selection pairs perform as well as or better than randomly assigned

pairs.

Hypothesis 3: Pair programming in CS1 increases retention of CS majors.

Alternative: Pair programming in CS1 does not increase retention of CS majors.

Resolution: Retention was analyzed by comparing all computer science majors

enrolled in the lecture course in fall 2004 (baseline data), fall 2005 (pilot study) and

spring 2006 (formal study). The students of each semester were analyzed by major,

www.manaraa.com

77

gender and successful completion of the first CS course. Students for each semester

were identified first by successful completion. The researcher assumed that a student

who does not pass the class will interpret the failure as a negative experience and

therefore will be more likely to change their major therefore the first goal of increasing

the retention rate is to increase the passing rate. The students were then identified by

major. The researcher’s goals were to retain students who have identified computer

science as their major. Genders of the students were also analyzed to identify if the

research measures improved the female retention rate.

The CS majors of fall 04 were divided into 3 categories and each category was then

divided by gender to reveal retention statistics by gender. The first category (1)

contained students who passed the course and enrolled in the next course during the

next semester; these students were also identified if they remained as a CS major one-

year later (this is especially important because the highest attrition occurs at the

conclusion of the first year of study.) The second category (2) contained students who

did not pass the first course, but remained in the major by repeating the course in the

next semester. The percentage of these students was also analyzed to investigate if they

remained a CS major one-year later. These same intercessions were evaluated in a

study conducted at the University of Santa Cruz[34, 35] to identify persistence in the

computer science major. Both categories one and two are considered to be retained

students. The third category (3) identified students that changed their major at the

conclusion of the first semester and at the end of the first year regardless of completion

of the course. These students are considered to be non-retained. All of the categories

www.manaraa.com

78

yield percentages to which fall 2005 and spring 2006 data can be compared. A Chi-

square test was used to report statistical significance, if any.

The baseline data of fall 2004 yields the following composition as displayed in chart 7;

14 CS majors, 34 non-CS majors, 26 males, 22 females, 23 students passed, and 25 did

not pass. Of the CS majors, 8 were male and 6 were female.

Summarized in Table 16, category one shows 35.7% of CS majors passed and were

retained at the completion of one semester, 28.6% of the CS majors, as shown in

category two, did not pass the course but remained a CS major at the conclusion of the

first semester. Summing the percentages yields 64.3% of the CS majors that began in

fall 2004 were retained at the end of the first semester. Of those same students, 57.1%

of the students were retained at the conclusion of the first academic year regardless of

success or non-success in the 2nd enrolled course. All 14 CS majors from the fall 2004

semester were accounted for in the data.

www.manaraa.com

79

Table 16: Fall 2004 CS Majors Retention Data

N=14
One

Semester Percentages One Year Percentages
Cat 1 - A 5 35.7% 8 57.1%

4 50.0% 6 75.0%Cat 1 - Males
Cat 1 - Females 1 16.7% 2 33.3%

Cat 2 4 28.6%

Cat 2 - Males 2 25.0%
Cat 2 - Females 2 33.3%

Cat 3 5 35.7% 1 7.1%

Cat 3 - Males 2 25.0% 0 0.0%
Cat 3 - Females 3 50.0% 1 16.7%

Total 14 100% 9 64.3%

Retained 9 64.3% 8 57.1%
Did Not Retain 5 35.7% 1 7.1%

M Retained 6 75.0% 6 75.0%
F Retained 3 50.0% 2 33.3%

Table 8 shows that at the conclusion of one year, 75% of the male CS majors were

retained and only 33% of the female CS majors were retained. These statistics mirror

the national computer science retention rates.

The data from fall 2005 yields the following composition as displayed in chart 8; 49 CS

majors, 29 non-CS majors, 56 males, 22 females, 51 students passed, 25 did not pass

and 2 students received an incomplete for the final grade. Of the CS majors, 34 were

male and 15 were female.

Summarized in Table 17, Category one shows 61.2% of CS majors passed and were

retained at the completion of one semester, 18.4% of the CS majors, as shown in

category two, did not pass the course but remained a CS major at the conclusion of the

www.manaraa.com

80

first semester. Summing the percentages shows that 79.6% of the CS majors that began

in fall 2005 were retained at the end of the first semester. Of those same students,

34.7% of the students were retained at the conclusion of the first academic year

regardless of success or non-success in the 2nd enrolled course. All 49 CS majors from

the fall 2005 semester were accounted for in the data.

Table 17: Fall 2005 CS Major Retention Data

N=49
One

Semester Percentages One Year Percentages
Cat 1 - A 31 63.3% 30 61.2%

Cat 1 - Males 21 61.8% 21 61.8%
Cat 1 - Females 10 66.7% 9 60.0%

Cat 2 9 18.4%

Cat 2 - Males 7 20.6%

Cat 2 - Females 2 13.3%

Cat 3 9 18.4% 10 20.4%

Cat 3 - Males 6 17.6% 7 20.6%
Cat 3 - Females 3 20.0% 3 20.0%

Total 49 100% 40 81.6%

Retained 40 81.6% 30 61.2%
Did Not Retain 9 18.4% 10 20.4%

M Retained 28 82.4% 21 61.8%
F Retained 12 80.0% 9 60.0%

The baseline data of spring 2006 yields the following composition; 27 CS majors, 25

non-CS majors, 37 males, 15 females, 30 students passed, 21 students did not pass and

1 student received an incomplete.

Summarized in Table 18, Category one shows 48.1% of CS majors passed and were

retained at the completion of one semester, 14.8% of the CS majors, as shown in

www.manaraa.com

81

category two, did not pass the course but remained a CS major at the conclusion of the

first semester. Summing the percentages shows that 63.0% of the CS majors that began

in spring 2006 were retained at the end of the first semester.

Table 18: Spring 2006 CS Major Retention Data
N=27 One Semester Percentages

Cat 1 - A 13 48.1%

Cat 1 - Males 10 55.6%
Cat 1 - Females 3 33.3%

Cat 2 4 14.8%

Cat 2 - Males 2 11.1%
Cat 2 - Females 2 22.2%

Cat 3 10 37.0%

Cat 3 - Males 0 0.0%
Cat 3 - Females 4 44.4%

Total 27 100%

Retained 17 63.0%
Did Not Retain 10 37.0%

Males Retained 12 66.7%
Females Retained 5 55.6%

Table 18 shows that at the conclusion of one semester, 66.7% of the male CS majors

were retained and 55.6 % of the female CS majors were retained.

Chart 10 shows the fluctuation in retention of all CS majors and by gender. Analysis of

the fluctuation suggests that more data per semester is needed to establish a true trend

and suggestion for the retention of CS majors at NSU to reduce the number of

anomalies that may influence the retention statistics.

www.manaraa.com

82

CS Majors Retained After One Semester

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Fall 2004 Fall 2005 Spring 2006

Semester

P
er

ce
nt

ag
e

All CS Majors
Male CS Majors

Female CS Majors

Chart 6: CS Majors Retained After One Semester

When comparing the number of CS majors retained after one semester, the difference is

statistically significant from the fall 2004 semester (64.3%) to the fall 2005 semester

(81.6%), p = 0.005 using the Chi-Square statistical measurement. However the

difference from fall 2004 to spring 2006 (63%) is not statistically significant (p=0.848)

and the percentages show a slight decrease in the percentage of CS majors retained at

the conclusion of one semester.

Examining the retention rates by gender shows that from fall 2004 to fall 2005, the

increase in the retention of male CS majors is slight (7.4%) and the difference is not

significantly different (p=0.201). However, the difference in the number of female CS

majors retained is vast (30%) and that difference is significantly different using the

Chi-Square test, p = 8.69 x 10-6.

Again the differences in gender from fall 2004 to spring 2006 do not reveal any

statistical significance, p=0.196 for males. The percentage of males actually retained

shows a decrease of 8.3% however, the data shows no support for the hypothesis in this

group. The percentage of females only increased slightly (5.6%) and is not statistically

significant using the Chi-square test (p= 0.427).

www.manaraa.com

83

Retention of CS majors enrolled one year later was analyzed only on the students

beginning during the fall 2005 semester and compared to the students enrolled during

the fall 2004 semester. Majors from spring 2006 enrolled one year later can not be

measured or forecasted as the spring 2007 semester is in the future. A longitudinal

study will be implemented and reported in future work.

The difference in the retention of CS Majors for fall 2004 (57.1%) and fall 2005

(61.2%) is only slightly improved and statistically non-significant. The differences by

gender however, are very interesting. The increase in females retained from fall 2004

(33.3%) to fall 2005 (60%) reports statistical significance, p=0.000154, using the Chi-

Square test. The retention of males one year later from fall 2004 was 75%,

comparatively, the retention of males one year later from fall 2005 was 61.8%. Chart

11 shows each representation by percentage.

CS Majors Retained After One Year

20.0%

30.0%
40.0%

50.0%
60.0%

70.0%
80.0%

Fall 2004 Fall 2005

Semester

P
er

ce
nt

ag
e All CS Majors

Male CS Majors

Female CS Majors

Chart 7: CS Majors Retained After One Year

The researcher offers the following as possible rationale for decrease in retention of

male CS majors. During the fall 2004 semester there were only 8 male CS majors

compared to the 34 male CS majors enrolled during the fall 2005 semester, a more than

300% increase in the male CS major population. Also, the possibility that research

www.manaraa.com

84

methods designed to improve the retention of females may have an adverse reaction on

the retention of males. This issue needs to be addressed and will be included as a topic

for future work.

The research does not support the hypothesis that pair programming in CS1 increases

the retention of all CS majors; however it does suggest that pair programming in CS1

increases the retention of female CS majors at the completion of one semester and one

year. There is no data to support the hypothesis among male CS majors. A longitudinal

study is needed to accurately suggest a trend in the retention of all CS majors regardless

of gender.

www.manaraa.com

85

Chapter 5

5.0 Conclusions

There are two major implementations that affected the spring 2006 students that the fall

2004 (baseline) students did not use. Those implementations were 1) the addition of

programming laboratory course and 2) the inclusion of the pair programming practice

to solve all software development assignments.

The laboratory was introduced to give CS majors a dedicated time when they can

practice coding techniques under the supervision of a faculty member and/or teaching

assistant. The faculty member or TA is present to assist with syntactical errors that

often frustrate beginning programmers. The frustration is a large contributor in a

student’s decision to elect or maintain computer science as an academic major. As

shown in Chart 8, lab enrollment only of the student was not a major contributor to

student success in the CSC 170 lecture course. Individual assessment analysis shows

that there is no significant improvement of students enrolled in both the lab and the

lecture course over those enrolled in the lecture course only. The results show that

those students enrolled in the lecture only performed consistently equitably with those

students enrolled in the lab and the lecture course.

www.manaraa.com

86

Comparison of Students Enrolled in the Lab vs
Students Not Enrolled in the Lab

33.3%

25.5%
21.6%19.6%

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%

Pass Fail

Success

S
tu

de
nt

P
er

c
en

ta
ge

Enrolled in Labs

Not Enrolled in Lab

Chart 8: Comparison of Student Success based on Lab Enrollment

Of those students enrolled during the spring 2006 semester, 58.8% passed the lecture

course, and of those, 33.3% of those students were not enrolled in the lab. The

laboratory was only required of CS majors. Other majors, such as mathematics majors

have the necessary logical skills to do well in beginning computer science courses and

will find the necessary time to apply the lecture with hands on activities.

The inclusion of the pair programming practice to solve all software development

assignments allowed the researcher to investigate the problem of whether pair

formation influences student satisfaction and therefore their retention as a computer

science major. Several ideas were explored in part; 1) Satisfaction of CS1 students is

increased when engaged in self-selection pair programming, 2) Self-selection pairing is

a beneficial pedagogical technique and 3) Self-selection pairing leads to the retention

of CS1 students.

The researcher concludes that satisfaction of CS1 students is increased when engaged

in self-selection pair programming based on the statistical significance shown in tests

that compare satisfaction between students engaging in self-selection pairing and

www.manaraa.com

87

randomly assigned pairing. The researcher also concludes that self-selection pairing is

a beneficial pedagogical technique based on the documented research that suggests pair

programming increases the ability of students learning to program regardless of pair-

formation methodology and the results of the individual assessments measured in this

study suggests that self-selection of partners does not decrease the overall effects of

pair programming in CS1 students. In addition, statistical measurements did not show

that other factors contributed significantly to the success of the students in enrolled in

the courses.

Finally, the research does not support the hypotheses that pair programming in CS1

increases the retention of all CS majors; however it does support the idea that pair

programming in CS1 increases the retention of female CS majors. Retention was

measured at various points of attrition, the highest being at the conclusion of the first

year of study. Documented research suggests that one of the largest influences on

retention is the satisfaction of the CS1 student at the conclusion of year one. This

study showed an increase in female retention at the end of the course and at the end of

the first year.

Documented research also suggests that pair programming increases a student’s

confidence and reduces his/her frustration level. All of these factors influence a

student’s decision on whether to maintain computer science as a major or not. The

researcher’s premise is to increase the number of factors that influence a student’s

decision to retain computer science as a major. The major goal was to show data that

suggests that satisfaction is increased when students participate in self-selection

pairing and therefore increases the retention rate of computer science majors. Students

www.manaraa.com

88

expressed more positive feelings of satisfaction with the pair programming process

when the students self-selected their partner. Anecdotal data suggests that having the

choice to self-select the partner allows the students to work harder at arranging to meet

for pair programming. In all statistical measurements, the students consistently

preferred to choose their partner over having the partner assigned to them. In a CS1

course, the election to implement self-selection pair formation or random pair

formation is trivial and students will perform equally whether the pairs are assigned or

self-selected, however self-selection aids in the satisfaction of a student and therefore

impacts their decision to retain computer science as their major. Moreover, the results

of the research were very successful and the implementation of the programming labs

and the use of self-selection pair programming continue to be employed in the

Computer Science department at Norfolk State University.

5.1 Future Work

A vast amount of research has been conducted regarding pair programming in the

academic environment. Some research has shown that different implementations work

with different sets of group while there is one common theme: pair programming in the

academic environment works. This research has shown that allowing CS1 students to

select their partner does not have an adverse effect on the learning of students and often

increases the likelihood that the student will enjoy the process although there are more

avenues to explore. The following list represents some of those possibilities for

additional research.

1. Implement self-selection pair programming over an extended period of time to

analyze its effects on long-term retention. More data is needed to accurately suggest

www.manaraa.com

89

an improvement in retention based on the self-selection pairing. Many things can

affect the retention of CS majors and only continued implementation of the

technique will allow a researcher to establish a trend line across semesters to

suggest that retention has improved.

2. Identify and test pedagogy techniques that can be used to reduce the parasitic

behavior in freshmen and non-interested students. Those techniques may include

topic delivery methods and/or software that can be used to keep the student focused

and enjoying the lecture course.

3. Later research has identified many techniques used to increase the retention of

females. Many of those techniques suggest creating environments that are more

social and inclusive. The techniques for creating the environment should be

analyzed to establish that those techniques used to increase the retention of female

CS majors do not cause a subsequent adverse reaction on the retention of male CS

majors. This study should look at those methods that are nurturing for females but

could be considered condescending for males.

4. Implement the research methodology in separate course sections; one for self-

selection pairing and the other for random pairing. Evaluate the measures over at

least two semesters to investigate whether self-selection pairing increases the

retention of CS majors.

www.manaraa.com

90

APPENDICES

APPENDIX A: Spring 2006 Execution Plan
CSC 170/170L
Spring 2006

Week/Date Lab Class (170L) Lecture Class (170)
1/ Jan 9 Introduction Q1
2/ Jan 16 L1, Individual,

Environment Intro
Q2

3/ Jan 23 L2, Selection Q3
4/ Jan 30 L3, Selection T1, PA1-Selection, Assessment using OPEF

5/ Feb 6 L4, Selection,
Assessment of L2-L4
using OPEF

Q4

6/ Feb 13 L5, Assigned Q5, PA2, Assigned, Assessment using OPEF

7/ Feb 20 L6, Assigned Q6
8/ Feb 27 L7- Assigned Q7
9/ Mar 6 L8-Assigned,

Assessment of L5-L8
using OPEF

T2, PA3, Choice of Selection or Assigned,
Assessment using OPEF

10/ Mar 13 Spring Break
11/ Mar 20 L9, Selection Q8
12/ Mar 27 L10, Selection Q9, PA4, Selection, Assessment using OPEF
13/ Apr 3 L11, Selection,

Assessment of L9-L11
using OPEF

Q10

14/ Apr 10 L12, Assigned T3, PA5, Assigned, Assessment using OPEF
15/ Apr 17 L13, Assigned Q11
16/ Apr 24 L14, Assigned,

Assessment of L12-L14
using OPEF.

Q12, PA6, Individual, Assessment using OPEF

17/May 1 Exam Week

L-Lab
Q-Quiz
T-Test
PA-Programming Assignment

170 – measures experience with one partner with one assignment over time period of
2-3 weeks
170L – measures experience with one partner with 3-4 assignments over time period
of 3-4 weeks
Assigned or Selection indicates the method in which the pair should be created. All
assigned pairs should be created without regard to factors such as personality type,
skill level, self esteem, and self-assessment.

www.manaraa.com

91

APPENDIX B: Peer Evaluation Form (Fall 05)
Laboratory # ____

Your Name ___________________________ Partner Name __________________________

Mark an X in the box that represents the extent to which you agree with each statement

Strongly
Disagree

Disagree Neither agree
nor disagree

Agree Strongly
Agree

11. My partner made a serious effort to
complete the assigned work.

12. My partner contributed to team
efforts.

13. My partner was technically capable
of completing this week’s lab
exercise.

14. My partner and I were compatible
when we worked together on this
exercise.

15. My partner helped me to complete
this exercise.

16. I enjoyed working with my partner
on this exercise.

17. My partner improved my ability to
complete this exercise.

18. The quality of this programming
exercise was improved because my
partner and I worked together.

19. My partner treated me with respect
while working on this exercise.

20. I was more confident completing
this exercise because my partner
worked with me.

Did you select your partner? Yes No
If No, would you rather select your partner? Yes No Doesn’t matter

If Yes, Why?___

How long have your known your partner?
Just met this semester (JMS).
JMS, we are in more than one class together.Which courses?

I knew my partner prior to the Fall 2005 semester

Did you enjoy the pair programming experience with this partner?

What was the partner's most significant contribution?

What was most irritating about working with this partner?

www.manaraa.com

92

APPENDIX C: Online Peer Evaluation Form

CSC170-01 Computer Programming I
PEER EVALUATION FORM SPRING '06

Wednesday April 12, 2006 8:59 AM

Choose the Laboratory from the Spring 2006 semester you are completing this survey for:

LAB # 1: PA1

YOUR NAME: DPS Student YOUR PARTNER'S NAME:
FOR EACH STATEMENT, SELECT THE OPTION
THAT BEST REPRESENTS THE EXTENT TO WHICH
YOU AGREE.

STRONGLY
DISAGREE

DISAGREE
NEITHER
AGREE OR
DISAGREE

AGREE STRONGLY
AGREE

1. My partner made a serious effort to complete
the assigned work

2. My partner contributed to team efforts

3. My partner was technically capable of
completing this week's lab exercise

4. My partner and I were compatible when we
worked together on this exercise.

5. My partner helped me to complete this
exercise.

6. I enjoyed working with my partner on this
exercise.

7. My partner improved my ability to complete
this exercise.

8. The quality of this programming exercise was
improved because my partner and I worked
together.

9. My partner treated me with respect while
working on this exercise.

10. I was more confident completing this
exercise because my partner worked with me.

11. Select the one method used to complete your tasks.

Worked alone

Two working on one computer at same time in same place for entire assignment

Shared work back and forth using email or equivalent

Other

12. Did you select your partner? Yes No

www.manaraa.com

93

12.1. Would you have preferred to choose your partner? Yes No

Does Not Matter

12.1.1.
Why?

13. How long have you known your partner?

Just met this semester.

Just met this semester, but we are in more than one class together.

I knew my partner prior to this semester.

13.1.
Which

courses?

14. Did you enjoy the pair programming experience with this partner?

15. What was the partner's most significant contribution?

16. What was most irritating about working with this partner?

SUBMIT

www.manaraa.com

94

APPENDIX D: Demographic Data Sheet

ID – Data:

CS Major: Y N

Active Major:

Gender: M F

Ethnicity: B W A MX

Pass CSC 170: Y N

Final Grade: A A- B+ B B- C+ C C- D F

SAT-M:

HS-GPA

C-GPA

Hometown City:

Hometown State:

Hometown Zip:

www.manaraa.com

95

Acronyms and Glossary

CS Computer Science
CS1 or CSC170 Computer Programming I course
CS1-L, CS2-L Computer Programming Laboratory course
HBCU Historically Black College and University
NSU Norfolk State University
SST School of Science and Technology
IT Information Technology
NCSU North Carolina State University
NSF National Science Foundation
XP Extreme Programming
SE Software Engineering

Pair Programming Two programmers working side-by-side at the same designs,
algorithms, codes, and tests

Extreme Programming A discipline of software development based on values,
communication, simplicity, feedback, courage, and respect

Peer Evaluation The mechanism used by students to evaluate their partner
during a pair programming activity to maintain individual
accountability

Pair Formation The method in which students are partnered

Pair Rotation Students pair with different classmates throughout the
semester

Driver One of the pair that types at the computer or writes down a
design

Navigator One of the pair that has the task of monitoring the driver’s
work for tactical and strategic defects

Random Pairing The method of pair formation where the instructor identifies
and assigns all pairing groups without regard to factors that
some research suggests increases pair compatibility

Self-Selection Pairing The method of pair formation in which a partner directly
self-selects with whom they want to work

www.manaraa.com

96

References

[1] "The Carnegie Classification of Institutions of Higher Education". 2005, The
Carnegie Foundation for the Advancement of Teaching,
http://www.carnegiefoundation.org/classifications/index.asp.

[2] Baheti, P., E. Gehringer, and D. Stotts, "Exploring the Efficacy of Distributed
Pair Programming", in Extreme Programming/ Agile Universe. 2002, Springer:
Chicage, IL.

[3] Baheti, P., et al. "Exploring Pair Programming in Distrubuted Object-Oriented
Team Projects". in OOPSLA Educator's Symposium . 2002. Seattle, WA.

[4] Beck, K., "Extreme Programming Explained: Embrace Change". The XP Series.
2000: Addison- Wesley.

[5] Beck, L.L., A.W. Chizhik, and A.C. McElroy, "Cooperative learning techniques
in CS1: design and experimental evaluation", in Proceedings of the 36th
SIGCSE technical symposium on Computer science education. 2005, ACM
Press: St. Louis, Missouri, USA.

[6] Berenson, S.B., et al., "Voices of women in a software engineering course:
reflections on collaboration". J. Educ. Resour. Comput., 2004. 4(1): p. 3.

[7] Bergin, J., et al., "Teaching software development methods: the case of extreme
programming", in Proceedings of the 35th SIGCSE technical symposium on
Computer science education. 2004, ACM Press: Norfolk, Virginia, USA.

[8] Bevan, J., L. Werner, and C. McDowell. "Guidelines for the Use of Pair
Programming in a Freshman Programming Class". in Conference on Software
Engineering and Training. 2002.

[9] Beyer, S., et al., "Gender differences in computer science students". SIGCSE
Bull., 2003. 35(1): p. 49-53.

[10] Cliburn, D., "Experiences with pair programming at a small college". The
Journal of Computing in Small Colleges, 2003. 19(10): p. 20-29.

[11] Cockburn, A. and L. Williams, "The Costs and Benefits of Pair Programming",
in Extreme Programming Examined. 2002, Addison-Wesley: Boston.

[12] Cohoon, J.M., "Must there be so few?: including women in CS", in Proceedings
of the 25th International Conference on Software Engineering. 2003, IEEE
Computer Society: Portland, Oregon.

www.manaraa.com

97

[13] Cohoon, J.M., "Toward improving female retention in the computer science
major". Commun. ACM, 2001. 44(5): p. 108-114.

[14] DeClue, T., "Pair programming and pair trading: effects on learning and
motivation in a CS2 course". The Journal of Computing in Small Colleges,
2003. 18(5): p. 49-56.

[15] DeLoatch, S., "Our Profile: School of Science and Technology ". 2005,
http://sst.nsu.edu/ourprofile.php.

[16] Domino, M.A., et al., "Conflict in collaborative software development", in
Proceedings of the 2003 SIGMIS conference on Computer personnel research:
Freedom in Philadelphia--leveraging differences and diversity in the IT
workforce. 2003, ACM Press: Philadelphia, Pennsylvania.

[17] Freeman, S., B. Jaeger, and J. Brougham. "Pair Programming: More Learning
and Less Anxiety in a First Programming Course". in ASEE Annual Conference
& Exposition: Staying in Tune with Engineering Education. 2003. Nashville,
TN: Northeastern University Monash University.

[18] Hanks, B., "Student performance in CS1 with distributed pair programming", in
Proceedings of the 10th annual SIGCSE conference on Innovation and
technology in computer science education. 2005, ACM Press: Caparica,
Portugal.

[19] Hanks, B. and C. McDowell. "Program Quality with Pair Programming in
CS1". in 9th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education. 2004. Leeds, Unikted Kingdom.

[20] Hans, G., A. Erik, and D. Tore. "An Initial Framework for Research on Pair
Programming". 2003.

[21] Hickey, T.J., J. Langton, and R. Alterman, "Enhancing CS programming lab
courses using collaborative editors". J. Comput. Small Coll., 2005. 20(3): p.
157-167.

[22] Ho, C.-w., et al., "Examining the Impact of Pair Programming on Female
Students", in NCSU Technical Report. 2004.

[23] Jefferies, R., "What is XP?" in XProgramming.com an Agile Software
Development Resource. 2001.

[24] Jepson, A. and T. Perl, "Priming the pipeline". SIGCSE Bull., 2002. 34(2): p.
36-39.

www.manaraa.com

98

[25] Katira, N., L. Williams, and J. Osborne. "Towards Increasing the Compatibility
of Student Pair Programmers". in International Conference on Software
Engineering (ICSE) 2005. 2005.

[26] Katira, N., et al. "On Understanding Compatibility of Student Pair
Programmers". in ACM Technical Symposium on Computer Science Education,
SIGCSE 2004. 2004. Norfolk, VA.

[27] Kist, S., "Project Management and Mythical Manmonths". 2001, Korean
Advanced Institute of Science and Technology

[28] Loftus, C. and M. Ratcliffe, "Extreme programming promotes extreme
learning?" in Proceedings of the 10th annual SIGCSE conference on Innovation
and technology in computer science education. 2005, ACM Press: Caparica,
Portugal.

[29] Margolis, J. and A. Fisher. "Geek Mythology and Attracting Undergraduate
Women to Computer Science". in Joint National Conference of th eWomen in
Engineering Program Advocates Network and the National Association of
Minority Engineering Program Administrators. 1997.

[30] Margolis, J. and A. Fisher, "Unlocking the Clubhouse: Womed in Computing".
2002, Cambridge, Massachusetts: MIT Press.

[31] Matthias, M.M. and P. Frank. "An Empirical Study about the Feelgood Factor
in Pair Programming". 2004.

[32] McDowell, C., B. Hanks, and L. Werner. "Experimenting with Pair
Programming in the Classroom". in ITiCSE. 2003. Thessaloniki, Greece.

[33] McDowell, C., et al. "The Effects of Pair Programming on Performance in an
Introductory Programming Course". in SIGCSE '02. 2002. Northern Kentucky.

[34] McDowell, C., et al., "Pair Programming Improves Student Retention,
Confidence, and Program Quality". Commun. ACM, 2006. 49(8): p. 90-95.

[35] McDowell, C., et al. "The Impact of Pair Programming on Student
Performance, Perception and Persistence". in 25th International Conference on
Software Engineering. 2003.

[36] McKinney, D. and L.F. Denton, "Affective assessment of team skills in agile
CS1 labs: the good, the bad, and the ugly", in Proceedings of the 36th SIGCSE
technical symposium on Computer science education. 2005, ACM Press: St.
Louis, Missouri, USA.

www.manaraa.com

99

[37] McKinney, D. and L.F. Denton, "Developing collaborative skills early in the CS
curriculum in a laboratory environment", in Proceedings of the 37th SIGCSE
technical symposium on Computer science education. 2006, ACM Press:
Houston, Texas, USA.

[38] Melnik, G. and F. Maurer, "Perceptions of Agile Practices: A Student Survey",
in Extreme Programming/ Agile Universe. 2002: Chicago, IL.

[39] Muller, M.M. and W.F. Tichy, "Case study: extreme programming in a
university environment", in Proceedings of the 23rd International Conference
on Software Engineering. 2001, IEEE Computer Society: Toronto, Ontario,
Canada.

[40] Nagappan, N., et al. "Improving the CS1 Experience with Pair Programming".
in ACM Technical Symposium on Computer Science Education, SIGCSE 2003.
2003.

[41] Nawrocki, J. and A. Wojciechowski. "Experimental Evaluation of Pair
Programming". in European Software Control and Metrics. 2001. London,
England.

[42] Nosek, J.T., "The case for collaborative programming". Commun. ACM, 1998.
41(3): p. 105-108.

[43] NSU, O.o.A.A., "About NSU", http://www.nsu.edu/about/.

[44] NSU, O.o.E.M., "Norfolk State Univesity Fall 2005 Facts". 2005,
http://www.nsu.edu/enrollmentmanagement/IRfactsheet.html.

[45] Palmieri, D.W., "Knowledge management through pair programming". 2002. p.
vi, 80 p.

[46] Preston, D., "Pair Programming as a Model of Collaborative Learning: A
Review of the Research". Journal of Computing Sciences in Colleges, 2005.
20(4).

[47] Preston, D., "Using collaborative learning research to enhance pair
programming pedagogy". SIGITE Newsl., 2006. 3(1): p. 16-21.

[48] Sanders, D. "Student Perceptions of the Suitability of Extreme and Pair
Programmng". in XP Agile Universe. 2001.

[49] Shukla, A., "Pair programming and the factors affecting Brooks' Law". 2002. p.
vii, 75 p.

www.manaraa.com

100

[50] Slaten, K., et al., "Undergraduate Student Perceptions of Pair Programming and
Agile Software Methodologies: Verifying a Model of Social Interaction". Agile
2005, 2005: p. 323-330.

[51] Srikanth, H., et al. "On Pair Rotation in the Computer Science Course". in
Conference on Software Engineering Education and Training. 2004.

[52] Stotts, D., et al., "Virtual Teaming: Experiments and Experiences with
Distributed Pair Programming", in Extreme Programming and Agile Methods -
XP/Agile Universe 2003 2003, Springer Berlin / Heidelberg New Orleans. p.
129 - 141

[53] Succi, G. and M. Marchesi, "Extreme Programming Examined". The XP Series.
2001: Addison Wesley.

[54] Sullivan, S.L., "Reciprocal peer reviews", in Proceedings of the twenty-fifth
SIGCSE symposium on Computer science education. 1994, ACM Press:
Phoenix, Arizona, United States.

[55] Thomas, L., M. Ratcliffe, and A. Robertson, "Code warriors and code-a-phobes:
a study in attitude and pair programming", in Proceedings of the 34th SIGCSE
technical symposium on Computer science education. 2003, ACM Press: Reno,
Navada, USA.

[56] Thonas, L., M. Ratcliffe, and A. Robertson. "Code Warrior and Code-a-Phobes:
A Study in Attitude and Pair Programming". in SIGCSE 2003. 2003. Reno, NN.

[57] University, N.S., "About NSU", http://www.nsu.edu/about/.

[58] VanDeGrift, T., "Coupling pair programming and writing: learning about
students' perceptions and processes", in Proceedings of the 35th SIGCSE
technical symposium on Computer science education. 2004, ACM Press:
Norfolk, Virginia, USA.

[59] Werner, L.L., B. Hanks, and C. McDowell, "Pair-programming helps female
computer science students". J. Educ. Resour. Comput., 2004. 4(1): p. 4.

[60] Wiebe, E., et al. "Pair Programming in Introductory Programming Labs". in
American Society for Engineering Education Annual Conference & Exposition.
2003.

[61] Williams, L. "But, isn't that cheating? Collaborative programming." in 29th
Annual Frontiers in Education Conference. 1999. Champaign, IL.

[62] Williams, L., "The Collaborative Software Process", in Computer Science.
2000, Univeristy of Utah: Utah. p. 206.

www.manaraa.com

101

[63] Williams, L., "Debunking the Nerd Stereotype with Pair Programming". 2006.
p. 83-85.

[64] Williams, L. and R. Kessler, "All I Really Need to Know about Pair
Programming I Learned In Kindergarten". Communications of the ACM, 2000.

[65] Williams, L. and R. Kessler. "The effects of "pair pressure" and "pair-learning"
on software engineering education." in Software Engineering Education and
Training. 2000. Los Alamitos, CA.

[66] Williams, L. and R. Kessler, "Experimenting with Industry's "Pair-
Programming" Model in the Computer Science Classroom". Computer Science
Education, 2001.

[67] Williams, L. and R. Kessler, "Pair Programming Illuminated". 1st ed. 2003:
Addison Wesley. 288.

[68] Williams, L., et al., "Strengthening the Case for Pair-Programming"". IEEE
Software 2000, 2000. 17: p. 19-35.

[69] Williams, L., et al. "Building Pair Programming Knowledge through a Family
of Experiments". in IEEE International Symposium on Empirical Software
Engineering (ISESE) 2003. 2003.

[70] Williams, L. and R.L. Upchurch. "In Support of Student Pair Programming". in
SIGCSE Conference on Computer Science Education. 2001. Charlotte, NC.

[71] Williams, L., et al., "In Support of Pair Programming in the Introductory
Computer Science Course" . Computer Science Education, 2002.

[72] Williams, L., et al. "Pair Programming in an Introductory Computer Science
Course: Initial Results and Recommendations". in OOPSLA Educator's
Symposium 2002. 2002.

[73] Wilson, D.G., "An empirical study of the tacit knowledge management potential
of pair programming". 2004. p. vi, 40 p.

[74] Wilson, J.D., N. Hoskin, and J.T. Nosek, "The benefits of collaboration for
student programmers", in Proceedings of the twenty-fourth SIGCSE technical
symposium on Computer science education. 1993, ACM Press: Indianapolis,
Indiana, United States.

